李铁刚 武广 刘军 胡姸青 张云付 罗大峰LI TieGang, WU Guang*, LIU Jun, HU YanQing, ZHANG YunFu and LUO DaFeng
1. 中国地质大学地球科学与资源学院,北京 1000832. 中国地质科学院矿产资源研究所 国土资源部成矿作用与资源评价重点实验室,北京 1000373. 云南驰宏资源勘查开发有限公司,曲靖 6550001. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China2. MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, CAGS, Beijing 100037, China3. Yunnan Chihong Resources Exploration and Development Limited Liability Company, Qujing 655000, China2013-08-11 收稿, 2013-11-27 改回.
甲乌拉铅锌银矿床位于内蒙古自治区东北部的满洲里地区(图1a)。本区已发现乌奴格吐山大型铜钼矿床、甲乌拉和查干布拉根大型铅锌银矿床、额仁陶勒盖大型银矿床、八大关中型铜钼矿床、哈拉胜小型铅锌矿床、头道井小型铜钼矿床、八八一小型铜钼矿床、巴彦浩雷铜金银矿点及大坝铜金银矿点等(图1b)。满洲里地区的主要矿床类型为斑岩型、热液脉型和浅成低温热液型。前人对甲乌拉矿床的研究主要集中在矿床地质特征(潘龙驹和孙恩守,1992;曾令平,2010;聂凤军等,2011)、地球化学(王大平等,1991;李宪臣和秦克章,1999;吕志成等,2000;赵清泉等,2005)和流体包裹体(双宝等,2009;翟德高等,2010;武广等,2010)方面。因以前缺少对铅锌矿床定年的有效方法,长期以来,一直未获得该区铅锌银矿床可靠的成矿年龄。精确测定矿床的形成年龄,对于正确认识矿床成因、控矿因素和总结成矿规律并指导找矿勘探工作都具有极为重要的意义(程裕淇,1983;翟裕生等,1992,2008;陈毓川等,1994;裴荣富和吴良士,1994;刘建明等,2004,1998a;毛景文和王志良,2000; 毛景文等,2005,2006)。近年来,随着同位素年代学的不断发展,直接利用矿石矿物开展同位素测年已经逐渐成熟,国内外研究者已在辉钼矿Re-Os同位素测年(Maoetal., 1999, 2008; 袁顺达等,2012)、锡石的U-Pb定年(Yuanetal., 2008, 2011)以及闪锌矿、方铅矿、黄铜矿、黄铁矿Rb-Sr测年(Nakaietal., 1990, 1993; Brannonetal., 1992a, b; Christensenetal., 1993, 1995a, b; Pettke and Diamond,1996,杨进辉和周新华,2000;韩以贵等,2007;张长青等,2008;张瑞斌等,2008;胡乔青等,2012;郑伟等,2013)等方面取得了一系列重要进展。本文在详细研究甲乌拉矿床地质特征的基础上,选取主成矿阶段的闪锌矿、黄铁矿开展Rb-Sr同位素定年工作,目的是确定甲乌拉矿床的成矿时代,为成矿地质背景和成矿规律研究提供年代学制约。
满洲里地区大地构造上位于额尔古纳兴凯造山带(亦称额尔古纳地块)东南缘,得尔布干深断裂北西侧(图1a)。额尔古纳造山带是西伯利亚板块南缘的萨彥-中蒙古-额尔古纳造山带的东段,呈北东向展布于大兴安岭西北部。该造山带南东界为得尔布干深断裂,北西侧为蒙古-鄂霍茨克缝合带。额尔古纳造山带经历了复杂的构造演化,中元古代以后的主要事件有6次:(1)新元古代中晚期-早寒武世,该区处于地槽发展阶段,发育中新元古代兴华渡口群和佳疙疸组的海相火山岩-碎屑岩建造,震旦-早寒武世期间,沉积额尔古纳河组海相碎屑岩-碳酸盐岩建造(Wuetal., 2012);(2)新元古代末期-早古生代初期,该区发生了兴凯造山运动,它与西伯利亚大陆东南缘的维吉姆-斯塔诺夫地块拼贴,形成兴凯-萨拉伊尔增生带(葛文春等,2005;Wuetal., 2005, 2012);(3)在早古生代,它与西南部的中蒙古地块沿克鲁伦河断裂拼合(李锦轶,1998;李锦轶等,2004);(4)在晚古生代,随古亚洲洋板块向西伯利亚板块俯冲消减和蒙古-鄂霍茨克弧后洋盆形成,它与西伯利亚大陆再次分离,成为古亚洲洋与蒙古-鄂霍茨克洋之间的岛弧地体的基底(祁进平等,2005);(5)在古生代末至中生代早期,蒙古-鄂霍茨克洋盆向南北两侧俯冲消减,额尔古纳造山带发育陆缘弧花岗岩类,形成八八一、八大关和乌奴格吐山斑岩型铜钼矿床;(6)古生代末以来,蒙古-鄂霍茨克洋自西向东闭合,蒙古-中朝大陆与西伯利亚大陆碰撞,额尔古纳造山带于中侏罗世末期完成与外贝加尔造山带的拼合(李锦轶,1998;Sorokinetal., 2004),晚侏罗世-早白垩世转入后碰撞阶段,发育中酸性为主的火山岩和小型侵入体,并形成一系列热液矿床,构成了著名的额尔古纳成矿带(武广等,2007)。
满洲里地区前中生代地层零星分布,主要包括新元古界佳疙疸组和震旦-下寒武统额尔古纳河组。前者由绢云石英片岩、石英岩、砂岩、板岩、流纹质凝灰岩和大理岩组成;后者主要为大理岩,夹少量绢云石英片岩和变砂岩。中生代地层构成研究区的主体,自下而上包括中侏罗统万宝组、中侏罗统塔木兰沟组、上侏罗统满克头鄂博组、上侏罗统玛尼吐组、下白垩统白音高老组、下白垩统梅勒图组和下白垩统大磨拐组。万宝组为陆相砾岩、砂砾岩、长石砂岩及薄层泥质粉砂岩夹煤层;塔木兰沟组主要由安山岩和玄武安山岩组成;满克头鄂博组为流纹岩;玛尼吐组为安山岩和英安岩;白音高老组由英安岩、流纹岩、凝灰岩组成;梅勒图组为玄武岩、安山岩;大磨拐组为砾岩、砂岩、页岩夹煤层(内蒙古自治区地质矿产局,1991;舒广龙等,2003;孟恩等,2011)。
满洲里地区褶皱和断裂构造均较发育。断裂构造主要为北东向和北西向。前者以得尔布干断裂为代表,该断裂控制了北东向断隆、断坳的分布,并在该断裂的北西侧隆起-半隆起区发育众多斑岩型铜钼矿床和中低温热液型铅锌银矿床,即该断裂控制了北东向成矿带的展布;后者以八大关、哈尼沟断裂和木哈尔断裂带为代表,控制了北西向成矿亚带的分布。前中生代褶皱较发育,主要为北东走向,以紧密褶皱为主,岩层陡倾,甚至倒转,轴部多有岩浆岩分布;中生代构造层中褶皱多为宽缓的短轴状,表现为穹隆或盆地。由于区域上火山岩浆作用强烈,相应产生一些火山构造,是区域上构造的又一特征。
图1 满洲里地区大地构造位置(a, 据葛文春等,2007修改)和区域地质简图(b,据赵一鸣和张德全,1997;武广等,2010修改)1-八大关斑岩型铜钼矿床;2-八八一斑岩型铜钼矿床;3-龙岭矽卡岩型铜锌锡矿点;4-哈拉胜中低温热液脉型铅锌矿床;5-长岭斑岩型铜钼矿点;6-头道井斑岩型铜钼矿床;7-乌奴格吐山斑岩型铜钼矿床;8-大坝浅成低温热液型铜金银矿点;9-甲乌拉中低温热液脉型铅锌银矿床;10-查干布拉根中低温热液脉型铅锌银矿床;11-额尔登乌拉浅成低温热液型银矿点;12-巴彦浩雷浅成低温热液型铜金银矿点;13-努其根乌拉中低温热液脉型铅锌银矿点;14-额仁陶勒盖浅成低温热液型银矿床.①-得尔布干断裂;②-额尔古纳河-呼伦断裂;③-八大关断裂;④-哈尼沟断裂;⑤-木哈尔断裂带Fig.1 Sketch regional geological map of the Manzhouli area in Inner Mongolia, showing geotectonic units (a, modified after Ge et al., 2007) and locations of major deposits/occurrences (b, modified after Zhao and Zhang, 1997; Wu et al., 2010)Names of numbered deposits/occurrences: 1-Badaguan porphyry Cu-Mo deposit; 2-Babayi porphyry Cu-Mo deposit; 3-Longling skarn Cu-Zn-Sn occurrence; 4-Halasheng epithermal-to-mesothermal lode Pb-Zn deposit; 5-Changling porphyry Cu-Mo occurrence; 6-Toudaojing porphyry Cu-Mo deposit; 7-Wunugetushan porphyry Cu-Mo deposit; 8-Daba epithermal Cu-Au-Ag occurrence; 9-Jiawula epithermal-to-mesothermal lode Pb-Zn-Ag deposit; 10-Chaganbulagen epithermal-to-mesothermal lode Pb-Zn-Ag deposit; 11-Erdengwula epithermal Ag occurrence; 12-Bayanhaolei epithermal Cu-Au-Ag occurrence; 13-Wuqigenwula epithermal-to-mesothermal lode Pb-Zn-Ag occurrence; 14-Erentaolegai epithermal Ag deposit. Names of numbered faults/fault belt: ①-Derbugan fault; ②-Ergunahe-Hulun fault; ③-Badaguan fault; ④-Hanigou fault; ⑤-Muhar fault belt
图2 甲乌拉矿床地质图(据赵一鸣和张德全,1997修改)1-第四系;2-下白垩统梅勒图组基性火山岩;3-上侏罗统-下白垩统酸性、中酸性火山岩;4-中侏罗统塔木兰沟组中基性火山岩;5-中侏罗统万宝组砂岩、砾岩;6-燕山晚期正长斑岩;7-燕山晚期石英斑岩;8-燕山晚期石英二长斑岩;9-燕山晚期长石斑岩;10-海西晚期花岗岩;11-地质界线;12-破碎带;13-矿体;14-矿体编号Fig.2 Geological map of the Jiawula Pb-Zn-Ag deposit(modified after Zhao and Zhang 1997)1-Quaternary; 2-Lower Cretaceous Meiletu Fm. basalt volcanic rock; 3-Lower Cretaceous-Upper Jurassic acidic volcanic rock and intermediate-acidic volcanic rock; 4-Middle Jurassic Tamulangou Fm. intermediate-basalt volcanic rock; 5-Middle Jurassic Wanbao Fm. sandstone and conglomerate; 6-Late Yanshanian orthophyre; 7-Late Yanshanian quartz porphyry; 8-Late Yanshanian quartz monzonite porphyry; 9-Late Yanshanian feldspar porphyry; 10-Late Hercynian granite; 11-geological boundary; 12-fracture zone; 13-ore body; 14-ore body number
区域岩浆活动频繁,可划分为海西晚期、印支期、燕山早期和燕山晚期4期(武广等,2010)。海西晚期花岗岩类多呈岩基、岩株状产出,主要岩石类型为花岗岩、斜长花岗岩、花岗闪长岩、二长花岗岩,其K-Ar同位素年龄为262~271Ma(赵一鸣和张德全,1997);印支期花岗岩多呈岩基产出,主要岩石类型为二长花岗岩和正长花岗岩,有少量花岗闪长岩,其Rb-Sr等时线年龄为211±21Ma~225.4±7.9Ma(秦克章等,1998);燕山早期花岗岩类多呈岩基或岩株状出露,为黑云母花岗岩、花岗闪长岩、二长花岗岩,其K-Ar同位素年龄为138~177Ma(赵一鸣和张德全,1997),其与斑岩型铜钼矿化关系密切(武广等,2010);燕山晚期侵入岩多以浅成-超浅成的岩株或岩枝产出,主要岩石类型为花岗斑岩、石英斑岩和石英二长斑岩,其K-Ar同位素年龄为93~138Ma(Qinetal. 1995),与该区铅锌银金成矿关系密切(武广等,2010)。
甲乌拉矿床位于满洲里市南西150km,东距新巴尔虎右旗政府所在地——阿拉坦额莫勒镇45km,地理坐标:东经:116°14′30″~116°20′00″、北纬:48°46′00″~48°49′30″。矿区出露地层主要为侏罗系中统万宝组陆相砾岩和砂岩、中侏罗统塔木兰沟组安山岩和玄武安山岩、上侏罗统满克头鄂博组流纹岩、上侏罗统玛尼吐组安山岩和英安岩、下白垩统白音高老组英安岩、流纹岩和凝灰岩及下白垩统梅勒图组玄武岩。侵入岩有主要为海西晚期的花岗岩和燕山晚期(早白垩世)的正长斑岩、石英斑岩、石英二长斑岩、长石斑岩。矿区所在位置属中生代燕山期构造-岩浆活动强烈地区,北侧的北西向木哈尔断裂和南侧的北西西向甲乌拉-查干布拉根断裂规模较大,而与火山机构有成因联系的北西向和北北西向断裂构成向北西展开、向南东收敛的扇形,这些扇形断裂控制了矿体的产出(图2)。
图3 甲乌拉矿床2号勘探线剖面图(据赵一鸣和张德全,1997;翟德高等,2010资料修改)Fig.3 Geological cross sections along the exploration line No. 2 of the Jiawula Pb-Zn-Ag deposit (modified after Zhao and Zhang, 1997; Zhai et al., 2010)
甲乌拉矿床现已圈出40余条矿体,所有矿体均呈脉状产于北西西-北北西向断裂中,矿体总体走向330°~350°,倾向南西,倾角42°~70°,水平和垂直方向,矿体均具有尖灭再现(图2、图3)。甲乌拉矿床主要由1、2、3、4和12号矿体组成,其中2号矿体规模最大,断续延长达2000m,延深300~500m,厚度0.36~14.98m,平均3.87m(图2、图3)。平均品位:Ag为124.31×10-6、Pb为2.65%、Zn为4.24%、Cu为0.30%(翟德高等,2010)。
矿石中原生金属矿物主要为方铅矿、闪锌矿、黄铁矿,其次为黄铜矿、磁黄铁矿、毒砂、磁铁矿;含银矿物主要为辉锑铅银矿、硫锑铜银矿、含银铅铋矿、银黝铜矿、深红银矿、辉银矿、自然银;次生矿物有赤铁矿、白铅矿、菱锌矿、锌矾。非金属矿物主要为石英、碳酸盐、绿泥石等。
图4 甲乌拉铅锌银矿床矿石典型照片(a)-块状铅锌矿石;(b)-闪锌矿出溶乳滴状黄铜矿;(c)-方铅矿交代黄铁矿,闪锌矿交代黄铁矿和方铅矿;(d)-含乳滴状黄铜矿的闪锌矿交代黄铁矿;(e)-方铅矿交代磁黄铁矿;(f)-黄铜矿包裹黄铁矿. Cp-黄铜矿;Gn-方铅矿;Po-磁黄铁矿;Py-黄铁矿;Sp-闪锌矿 Fig.4 Representative photographs of ores from the Jiawula Pb-Zn-Ag deposit(a)-massive lead-zinc ore; (b)-chalcopyrite exsolved from sphalerite under reflected light; (c)-galena replacing pyrite, and pyrite and galena replaced by sphalerite under reflected light; (d)-sphalerite containing emulsion droplet chalcopyrite replacing pyrite under reflected light; (e)-galena replacing pyrrhotite under reflected light; (f)-chalcopyrite involving pyrite under reflected light. Cp-chalcopyrite; Gn-galena; Po-pyrrhotite; Py-pyrite; Sp-sphalerite
矿石结构主要有自形-半自形-他形粒状结构、充填结构、交代残余结构、包含结构、乳浊状结构、叶片状结构、碎裂结构和纤状、羽状、雏晶结构。构造主要为稠密浸染状构造、稀疏-稠密浸染状构造、块状构造和角砾状构造,部分矿石具脉状和细脉状构造。
围岩蚀变类型主要为硅化、绿泥石化、伊利石水白云母化、萤石化、碳酸盐化和青磐岩化。其中,硅化、绿泥石化、伊利石水白云母化、萤石化、碳酸盐化一般局限于含矿构造带内及附近围岩中,呈带状分布,而青磐岩化发育于塔木兰沟组中基性火山岩中,呈面型分布。与成矿关系密切的蚀变类型主要为硅化、绿泥石化和碳酸盐化。
依据野外矿脉穿切次序、矿物组合及矿物之间的共生关系等特征,将甲乌拉矿床的成矿过程划分为热液、表生2个成矿期。热液成矿期包括4个成矿阶段:(1)石英+毒砂+黄铁矿(粗粒)+磁铁矿阶段;(2)石英+磁黄铁矿+黄铁矿(晶型较好)+黄铜矿阶段;(3)石英+碳酸盐+闪锌矿+方铅矿+黄铁矿+自然银+含银矿物±黄铜矿阶段;(4)石英+碳酸盐+黄铁矿阶段。表生期形成褐铁矿、硬锰矿、白铅矿、菱锌矿、铅矾、锌矾、软锰矿等矿物组合。其中,热液期第三成矿阶段,即石英+碳酸盐+闪锌矿+方铅矿+黄铁矿+自然银+含银矿物±黄铜矿阶段是甲乌拉矿床的主成矿阶段,形成了该矿床主要的工业铅锌银矿体。
本次实验的闪锌矿和黄铁矿样品分别采自甲乌拉矿床1号矿体1采区四盲井一中段、1号矿体1采区四盲井五中段、12号矿体七中段、3号矿体12号井四中段、2号矿体南段。样品均为热液期第三成矿阶段的矿石,即石英+碳酸盐+闪锌矿+方铅矿+黄铁矿+自然银+含银矿物±黄铜矿阶段的块状铅锌矿石(图4a)。主要金属矿物为闪锌矿、方铅矿、黄铁矿、黄铜矿和磁黄铁矿(图4)。闪锌矿呈棕褐色,镜下呈灰色,具他形粒状结构和固溶体分离结构(图4a-d);黄铁矿呈浅黄色,镜下呈浅棕色,具半自形-他形粒状结构(图4c, d, f);方铅矿呈铅灰色,镜下呈灰白色,呈半自形粒状和他形粒状结构,常交代黄铁矿和磁黄铁矿(图4c, e);磁黄铁矿呈暗铜黄色,镜下呈淡玫瑰色,他形粒状(图4e);黄铜矿呈铜黄色,镜下亦呈铜黄色,除在闪锌矿中呈乳滴状结构外(图4b-d),亦可见独立的黄铜矿,常包裹早期的黄铁矿,构成包含结构(图4f)。
从图4中可以看出,甲乌拉矿床的黄铁矿较为纯净,但多数闪锌矿中含有出溶的乳滴状黄铜矿。为了挑选出纯度较高的闪锌矿,选样前首先磨制光片,尽量挑选出固溶体分离结构不发育的闪锌矿样品挑选单矿物。将样品粉碎到40~80目,在双目镜下挑选出闪锌矿和黄铁矿,黄铁矿和绝大多数闪锌矿样品的纯度达99%以上,个别闪锌矿样品因含出溶的黄铜矿,其纯度低于99%,但因为黄铜矿与闪锌矿的同位素分馏较接近,因此,对定年结果基本上没有影响。将选出的黄铁矿和闪锌矿用蒸馏水清洗,低温蒸干,然后将纯净的单矿物样品在玛瑙研钵内研磨至200目左右待测。因为闪锌矿等金属矿物的Rb、Sr含量较低,甚至低于0.01×10-6,为了确保Rb-Sr同位素定年的可行性,我们首先在南京大学现代分析中心同位素分析室对上面的7个闪锌矿、6个黄铁矿样品进行了微量元素Rb、Sr含量的草测,在此基础上,挑选适合定年的样品在南京大学现代分析中心同位素分析室进行Rb、Sr含量和同位素组成测定。具体分析方法如下:原粉末样品用混合酸溶解,取清液上离子交换柱分离,采用高压密闭熔样和阳离子交换技术分离和提纯,然后用英国产的VG354质谱仪测定,测定方法见文献(Wangetal., 2007;王银喜等, 2007)。用于测定的美国NBS987同位素标样为:87Sr/86Sr=(0.710236±7),Sr的全流程空白为(5~7)×10-9g,87Sr/86Sr同位素比值用86Sr/88Sr=0.1194进行标准化。87Sr/86Sr的分析误差为±1%,λRb=1.42×10-11a-1。等时线年龄用ISOPLOT(Ludwig,1998)程序计算。
表1甲乌拉铅锌银矿床闪锌矿和黄铁矿Rb-Sr同位素组成
Table 1 Rb-Sr isotopic analyses of sphalerite and pyrite from the Jiawula Pb-Zn-Ag deposit
样品号测试矿物Rb(×10-6)Sr(×10-6)87Rb86Sr87Sr86Sr87Sr86Sr()iNJ9-3闪锌矿2.4391.4282.0690.716972±50.712764NJ9-4闪锌矿3.4871.7535.8620.724464±50.712544NJ9-5闪锌矿4.0121.6257.2810.727566±50.712770NJ9-6闪锌矿4.3073.8133.3360.719333±50.712549NJ9-6黄铁矿0.15726.4360.07230.712823±50.712634NJ9-7闪锌矿2.5211.9023.9080.720578±50.712649NJ9-7黄铁矿0.10342.2310.13670.712962±50.712641NJ9-9闪锌矿4.9821.30111.290.735598±50.712676NJ9-9黄铁矿7.3672.9427.3840.727391±50.712684NJ9-10黄铁矿3.8914.1062.8610.718462±50.712381NJ9-11黄铁矿2.9541.9834.3960.721609±50.712646NJ9-12黄铁矿4.8071.5369.2310.731475±50.712673NJ-52闪锌矿1.9527.1480.80560.714279±50.712711
图5 甲乌拉铅锌银矿床单矿物闪锌矿Rb-Sr等时线图解Fig.5 Rb-Sr isochron of sphalerite from the Jiawula Pb-Zn-Ag deposit
闪锌矿和黄铁矿的Rb、Sr含量和同位素组成测定结果见表1。本次测试了13个样品,其中7个闪锌矿,6个黄铁矿,通过对单矿物以及共生矿物间的矿物组合来构筑等时线,这样单矿物和共生矿物的等时线年龄可以相互约束,从而提高等时线的精确度,得出比较精确的成矿年龄(郑伟等,2013)。得到的87Rb/86Sr-87Sr/86Sr图均表现出很好的线性关系(图5、图6、图7)。
图6 甲乌拉铅锌银矿床单矿物黄铁矿Rb-Sr等时线图解Fig.6 Rb-Sr isochron of pyrite from the Jiawula Pb-Zn-Ag deposit
图7 甲乌拉铅锌银矿床共生组合闪锌矿和黄铁矿Rb-Sr等时线图解Fig.7 Rb-Sr isochron of sphalerite and pyrite from the Jiawula Pb-Zn-Ag deposit
利用ISOPLOT软件包计算出闪锌矿Rb-Sr等时线年龄t=143.0±2.0Ma,初始锶同位素比值ISr=0.71265,MSWD=3.2(图5);黄铁矿Rb-Sr等时线年龄t=142.0±3.0Ma,初始锶同位素比值ISr=0.71267,MSWD=5.7(图6);共生矿物组合闪锌矿与黄铁矿Rb-Sr等时线年龄t=142.7±1.3Ma,初始锶同位素比值ISr=0.71266,MSWD=3.8(图7)。
矿床成矿时代的精确测定一直是矿床学研究的一个难点。近年来,利用矿石矿物(如闪锌矿等)或与成矿有关的脉石矿物(如萤石等)的Rb-Sr同位素体系来直接获得成矿年龄已涌现大量成功实例(Nakaietal., 1990;Brannonetal., 1992a;Tretbaretal., 2000;杨进辉和周新华,2000;Yangetal., 2001;王彦斌等,2004;郑伟等,2013)。热液矿物Rb-Sr等时线年龄测年的基本前提是同源、同时、封闭性、一致的(87Sr/86Sr)i以及具有不同的(87Rb/86Sr)i(李文博等,2002)。实验过程中,将闪锌矿粉碎至200目以下,然后进行超声波清洗,基本可排除次生及原生包裹体的干扰(刘建明等,1998a)。本次工作选择未见或少见裂隙,且结晶较好的致密块状矿石为研究对象,这样闪锌矿、黄铁矿等单矿物纯度相对比较高,尽量满足Rb-Sr同位素测年的前提条件。硫化物Rb-Sr定年是直接将硫化物全溶,测其Rb-Sr同位素组成,以确定其形成年龄,也直接代表了成矿年龄。一些学者认为利用金属矿床中共生矿物组合Rb-Sr等时线确定矿床的成矿时代会更加理想,因为共生热液矿物不仅符合Rb-Sr等时线定年的基本前提,而且可以提高Rb-Sr等时线的精确度(李志昌等,1994;刘建明等,1998a,b)。本文利用闪锌矿、黄铁矿进行Rb-Sr等时线年龄测定,这样使所获得的数据更为可信。
甲乌拉铅锌银矿床的容矿围岩主要为中侏罗统万宝组陆相砾岩、砂砾岩、长石砂岩及薄层泥质粉砂岩和中侏罗统塔木兰沟组橄榄玄武岩、玄武岩、玄武粗安岩、辉石安山岩、粗安岩、粗安质熔结凝灰岩、粗安质岩屑晶屑凝灰岩(潘龙驹和孙恩守,1992;双宝等,2009)。得尔布干成矿带北段的得耳布尔、比利亚谷、二道河子铅锌银矿床和西吉诺山铅锌银铜矿点的容矿围岩均为中侏罗统塔木兰沟组火山岩。因此,其成矿时代不会早于中侏罗世(武广等,2010)。本次获得的闪锌矿、黄铁矿以及共生矿物组合闪锌矿与黄铁矿的Rb-Sr等时线年龄结果一致(约142~143Ma),与盛继福和傅先政(1999)在甲乌拉矿床测得的139.2Ma石英二长斑岩单颗粒锆石年龄在误差范围内一致,进一步验证了本次所测成矿年龄的准确性和可行性。因此,甲乌拉铅锌银矿床形成于142~143Ma前的早白垩世。
对于甲乌拉矿床的成矿物质来源,前人主要通过铅同位素的研究来进行探讨,曾令平(2010)认为成矿物质主要来源于地壳深部和上地幔。双宝等(2009)认为成矿物质主要来源于下地壳,但混有地幔物质。
87Sr/86Sr是判断成岩成矿物质来源的重要指标,在矿床地质研究中常利用其来示踪成矿物质来源、岩浆流体、深源流体的壳幔混染作用(侯明兰等,2006)。为避免放射性87Rb衰变对锶同位素造成的影响,我们利用软件Geokit(路远发,2004)将各硫化物的87Sr/86Sr测试值换算到143Ma前的初始Sr同位素比值(表1)。从表1可以看出,甲乌拉矿床闪锌矿和黄铁矿的Sr同位素初始比值(87Sr/86Sr)i介于0.71238~0.71277之间,平均值为0.71264。上述数据与Rb-Sr等时线给出的锶初始值基本一致(0.71265~0.71267)。总体上看,甲乌拉矿床闪锌矿和黄铜矿的Sr初始比值变化较小,但其比值相对较高。甲乌拉矿床金属硫化物的锶初始值低于大陆地壳Sr同位素87Sr/86Sr平均值(0.719;孙省利,2001),但明显高于地幔Sr的初始值(0.704;Faure,1986)。Rb-Sr同位素组成表明,甲乌拉矿床的成矿物质主要来源于下地壳,但有少量地幔物质加入。
得尔布干成矿带主要发育斑岩型铜钼矿床、热液脉型和矽卡岩型铅锌银矿床及浅成低温热液型金银矿床(武广等,2010)。秦克章等(1999)获得乌奴格吐山大型斑岩铜钼矿床的二长花岗斑岩单颗粒锆石U-Pb年龄为183.3±0.6Ma,全岩Rb-Sr等时线年龄为183.9±1.0Ma,蚀变岩绢云母K-Ar年龄为183.5±1.7Ma,分别代表岩浆侵位后开始结晶年龄、岩浆冷却年龄和热液蚀变年龄;Chenetal. (2011)和Lietal. (2012)通过对乌奴格吐山斑岩铜钼矿研究,获得成矿的辉钼矿Re-Os等时线年龄177.6±4.5Ma。陈志广(2010)获得八大关中型斑岩铜钼矿床的石英闪长玢岩锆石LA-ICP-MS U-Pb年龄为229.6±2.0Ma。陈志广等(2010)获得太平川小型斑岩铜钼矿床的花岗闪长斑岩锆石LA-ICP-MS U-Pb年龄为202±5.7Ma,辉钼矿Re-Os等时线年龄为203.6±4.6Ma。上述岩石、矿物年代学研究结果表明,得尔布干成矿带斑岩型铜钼矿床形成于晚三叠世-早侏罗世。本文获得甲乌拉铅锌银矿床的成矿时代为142~143Ma。
我们本次的定年结果及前人对得尔布干成矿带重要矿床定年数据表明,得尔布干成矿带存在两期重要的成矿作用:一为斑岩型铜钼成矿作用,该期成矿作用发生于晚三叠世-早侏罗世;另一期为晚侏罗世-早白垩世早期,主要形成热液脉型铅锌银矿床、矽卡岩型铅锌银矿床和浅成低温热液型银矿床。
得尔布干成矿带中生代矿床的成矿构造背景一直是一个长期争论的问题,主要有4种认识:(1)认为包括本区在内的中国东部侏罗纪-白垩纪初期大规模斑岩-矽卡岩型铜钼矿床的形成应与东侧古太平洋板块的俯冲有关(葛文春等,2007);(2)认为得尔布干成矿带内的晚三叠世-早侏罗世斑岩型铜钼矿形成于蒙古-鄂霍茨克洋封闭后陆陆碰撞的后碰撞环境,成矿作用与后碰撞伸展过程中所诱发的岩浆作用及相关流体活动密切相关,而早白垩世期间的铅锌银矿床形成于西太平洋大陆边缘弧后伸展环境(佘宏全等,2009,2012);(3)认为得尔布干地区斑岩-矽卡岩型多金属矿床可能形成于晚三叠世蒙古-鄂霍茨克洋向其南侧的额尔古纳地块俯冲的陆缘弧环境(陈志广等,2010;张连昌等,2010);(4)认为得尔布干成矿带中生代矿床的形成均与北侧的蒙古-鄂霍茨克造山带演化过程有关,而与东侧的太平洋板块作用无关(赵一鸣和张德全,1997;武广等,2007;徐志刚等,2008;毛景文等,2013)。
蒙古-鄂霍茨克洋从二叠纪至晚侏罗世-早白垩世从东向西逐渐闭合(Kravchinskyetal., 2002),相应地与蒙古-鄂霍茨克洋演化有关的钙碱性火山岩或深成岩相应的从西向东逐渐变新。江思宏等(2010)对蒙古国西北部额尔登特铜钼矿区内的含矿斑岩体开展了锆石SHRIMP和LA-MC-ICP U-Pb测年,获得成岩时代为240Ma左右,辉钼矿的Re-Os等时线年龄241.0±3.1Ma;张连昌等(2010)对八大关、太平川斑岩Cu-Mo矿床锆石U-Pb和辉钼矿Re-Os定年结果表明,它们形成于三叠纪(202~229Ma),地球化学研究显示成矿的石英闪长斑岩和花岗闪长斑岩为I型花岗岩,属于钙碱性-高钾钙碱性的花岗闪长质岩石,轻稀土元素和大离子亲石元素富集、重稀土元素和高场强元素亏损,成矿岩体具有典型的埃达克岩(adakite)的地球化学特征,且与俯冲洋壳源区的埃达克岩地球化学特征相似;陈志广等(2010)认为蒙古-鄂霍茨克洋二叠纪-三叠纪一直存在向南俯冲。毛景文等(2013)指出,斑岩铜矿通常形成于活动大陆边缘,即使在碰撞造山带,斑岩铜矿的物质来源也是来自于滞留的俯冲板片,只有俯冲板片才满足形成斑岩铜矿所需要的铜物质和巨量流体。得尔布干成矿带斑岩型铜钼矿床形成于晚三叠世-早侏罗世,与蒙古-鄂霍茨克洋向南俯冲的时间一致。因此,我们认为乌奴格吐山、八大关、八八一、太平川斑岩型铜钼矿床形成于蒙古-鄂霍茨克洋向南俯冲的陆缘弧环境。
关于得尔布干成矿带晚侏罗世-早白垩世矿床的成矿背景,过去通常将其与大兴安岭中南段作为一个统一体考虑,认为由太平洋板块于晚侏罗世-早白垩世向大陆俯冲而生成(葛文春等,2007;佘宏全等,2009,2012)。但是,徐志刚等(2008)指出,以往多被认为北北东向的大兴安岭火山岩带,实际上是大致以二连-五叉沟-博克图一线明显分为东、西两个亚带:东亚带成岩时代为晚侏罗世-早白垩世,岩石类型为英安质-流纹质火山岩,呈北北东向展布,向南南西延至辽西-冀北-晋北地区;而西亚带发育中侏罗世玄武(安山)质火山岩和晚侏罗世-早白垩世英安质-流纹质火山岩,火山岩呈北东向展布,向南西方向延伸至俄、蒙两国,实属蒙古-鄂霍茨克中生代岩浆岩带南侧的克鲁伦河(蒙古)-根河火山岩带的一部分。毛景文等(2013)指出,尽管得尔布干成矿带与大兴安岭成矿带的晚侏罗世-早白垩世矿床形成时代相近,但两者的成矿类型明显不同,前者主要形成浅成低温热液型矿床,成矿与火山-次火山热液密切相关,而后者的矿床类型主要为岩浆热液矿床,成矿与花岗质侵入岩有关。考虑到浅成低温热液型矿床大都形成于大陆边缘,因此推测得尔布干成矿带内的晚侏罗世-早白垩世脉状铅锌银矿床和矽卡岩型矿床及浅成低温热液型贵金属矿床很可能形成于蒙古-鄂霍茨克洋闭合后的碰撞后伸展环境。上黑龙江盆地广泛发育中侏罗世末期的推覆构造,而代表后碰撞阶段的走滑剪切和地块逃逸发生在早白垩世(李锦轶等,2004;武广等, 2008),因此,蒙古-鄂霍茨克造山带在中侏罗世期间属于碰撞造山阶段,而晚侏罗世-早白垩世为后碰撞演化阶段。甲乌拉矿床位于大兴安岭火山岩带西亚带的额尔古纳地块内,成矿时代为早白垩世。因此,我们认为,甲乌拉矿床可能形成于蒙古-鄂霍茨克造山带后碰撞伸展环境,伸展导致岩石圈拆沉、软流圈上涌,引致壳幔相互作用,进而形成大兴安岭西亚带火山-侵入岩及与其有关的热液脉型和矽卡岩型铅锌银矿床及浅成低温热液型贵金属矿床。
综上所述,我们认为得尔布干成矿带晚三叠世-早侏罗世斑岩型铜钼矿床形成于蒙古-鄂霍茨克洋向南俯冲的陆缘弧环境,而晚侏罗世-早白垩世热液脉型和矽卡岩型铅锌银矿床及浅成低温热液型贵金属矿床形成于蒙古-鄂霍茨克洋闭合后的碰撞后伸展环境。得尔布干成矿带中生代矿床的形成与北西侧的蒙古-鄂霍茨克洋造山过程有关,属于蒙古-鄂霍茨克成矿省的一部分。
(1)甲乌拉铅锌银矿床的闪锌矿、黄铁矿及其共生组合的Rb-Sr等时线年龄均为143Ma左右,矿床形成于早白垩世初期。
(2)甲乌拉矿床硫化物具有较高的Sr同位素初始比值,成矿物质主要来源于下地壳,有少量地幔物质加入。
(3)甲乌拉矿床形成于蒙古-鄂霍茨克洋闭合后的碰撞后伸展环境,得尔布干成矿带属于蒙古-鄂霍茨克成矿省的一部分。
致谢野外工作得到了云南驰宏锌锗有限公司海拉尔分公司的大力支持和帮助;实验工作得到了南京大学王银喜老师的热情帮助;本文在完成过程中,得到了中国地质科学院周振华博士、中国地质大学(北京)张东阳博士生、王天天、郑伟、郭硕、刘晓菲等硕士生的帮助;两位审稿人指出了文中的不足,并提出了很好的修改意见和建议;在此一并表示感谢。
Brannon JC, Podosek FA and McLimans RK. 1992a. A Permian Rb-Sr age for sphalerite from the upper Mississippi valley zinc-lead district, southwest Wisconsin. Nature, 356: 509-511
Brannon JC, Frank A, Podosek FA and McLimans RK. 1992b. A clue to the origin of dark and light bands of the 270Ma upper Mississippi valley (UMV) zinc-lead district, southwest Wisconsin. Abstracts with Programs-Geological Society of America, 24: 353
Bureau of Geology and Mineral Resources of Nei Mongol Autonomous Region. 1991. Regional Geology of Nei Mongol (Inner Mongolia) Autonomous Region. Beijing: Geological Publishing House, 7-498 (in Chinese)
Chen YC, Wang PA, Qing KL, Zhao DH and Mao JW. 1994. Metallogenic series of main ore deposits and regional metallogeny in the Qinling area. Mineral Deposits, 13(4): 289-298(in Chinese with English abstract)
Chen ZG. 2010. The Mesozoic tectonic-magmatic mineralization and geodynamic of Deerbugan metallogenic belt in northeast China. Ph. D. Dissertation. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 1-179 (in Chinese with English summary)
Chen ZG, Zhang LC, Lu BZ, Li ZL, Wu HY, Xiang P and Huang SW. 2010. Geochronology and geochemistry of the Taipingchuan copper-molybdenum deposit in Inner Mongolia, and its geological significances. Acta Petrologica Sinica, 26(5): 1437-1449(in Chinese with English abstract)
Chen ZG, Zhang LC, Wan B, Wu HY and Cleven N. 2011. Geochronology and geochemistry of the Wunugetushan porphyry Cu-Mo deposit in NE China, and their geological significance. Ore Geology Reviews, 43(1): 92-105
Cheng YQ, Chen YC, Zhao YM and Song TR. 1983. Further discussion on the problems of minerogenetic series of mineral deposits. Acta Geoscientia Sinica, (2): 1-64(in Chinese with English abstract)
Christensen JN, Halliday AN, Stephen EK and Sangster DF. 1993. Further evalution of the Rb-Sr dating of sphalerite: The Nanisivik Precambrian MVT deposit, Baffin Island, Canada. Abstracts with programs-Geological Society of America, 25: 471
Christensen JN, Halliday AN, Kenneth EL, Roderick NR and Stephen EK. 1995a. Direct dating of sulfides by Rb-Sr: A critical test using the Polaris Mississippi Valley-type Zn-Pb deposit. Geochim. Cosmochim. Acta, 59(24): 5191-5197
Christensen JN, Halliday AN, Vearncombe JR and Stephen EK. 1995b. Testing models of large-scale crustal fluid flow using direct dating of sulfides: Rb-Sr evidence for early dewatering and formation of Mississippi Valley-type deposits, Canning basin, Australia. Econ. Geol., 90(4): 877-884
Faure G. 1986. Principles of Isotope Geology. 2ndEdition. New York: John Wiley & Sons, 183-199
Ge WC, Wu FY, Zhou CY and Rahman AA. 2005. Emplacement age of the Tahe granite and its constraints on the tectonic nature of the Ergun block in the northern part of the Da Hinggan Range. Chinese Science Bulletin, 50(18): 2097-2105
Ge WC, Wu FY, Zhou CY and Zhang JH. 2007. Porphyry Cu-Mo deposits in the eastern Xing’an-Mongolian Orogenic Belt: Mineralization ages and their geodynamic implications. Chinese Science Bulletin, 52(24): 3416-3427
Han YG, Li XH, Zhang SH, Zhang YH and Chen FK. 2007. Single grain Rb-Sr dating and mineral inclusions of pyrite from the Linglong gold deposit, eastern Shandong, China. Chinese Science Bulletin, 52(11): 1307-1311(in Chinese)
Hou ML, Jiang SY, Jiang YH and Ling HF. 2006. S-Pb isotope geochemistry and Rb-Sr geochronology of the Penglai gold field in the eastern Shandong Province. Acta Petrologica Sinica, 22(10): 2525-2533(in Chinese with English abstract)
Hu QQ, Wang YT, Wang RT, Li JH, Dai JZ and Wang SY. 2012. Ore-forming time of the Erlihe Pb-Zn deposit in the Fengxian-Taibai ore concentration area, Shaanxi Province: Evidence from the Rb-Sr isotopic dating of sphalerites. Acta Petrologica Sinica, 28(1): 258-266(in Chinese with English abstract)
Jiang SH, Nie FJ, Su YJ, Bai DM and Liu YF. 2010. Geochronology and origin of the erdenet superlarge Cu-Mo deposit in Mongolia. Acta Geoscientia Sinica, 31(3): 289-306(in Chinese with English abstract)
Kravchinsky VA, Cogné JP, Harbert WP and Kuzmin MI. 2002. Evolution of the Mongol-Okhotsk ocean as constrained by new palaeomagnetic data from the Mongol-Okhotsk suture zone, Siberia. Geophysical Journal International, 148(1): 34-57
Li JY. 1998. Some new ideas on tectonics of NE China and its neighboring areas. Geological Review, 44(4): 339-347 (in Chinese with English abstract)
Li JY, Mo SG, He ZJ, Sun GH and Chen W. 2004. The timing of crustal sinistral strike-slip movement in the northern Great Khing’an ranges and its constraint on reconstruction of the crustal tectonic evolution of NE China and adjacent areas since the Mesozoic. Earth Science Frontiers, 11(3): 157-167 (in Chinese with English abstract)
Li N, Chen YJ, Ulrich T and Lai Y. 2012. Fluid inclusion study of the Wunugetu Cu-Mo deposit, Inner Mongolia, China. Mineralium Deposita, 47(5): 467-482
Li WB, Huang ZL, Xu DR, Chen J, Xu C and Guan T. 2002. Rb-Sr isotopic method on zinc-lead ore deposits: A review. Geotectonica et Metallogenia, 26(4): 436-441(in Chinese with English abstract)
Li XC and Qi KZ. 1999. Distribution pattern of major ore-forming elements and its significance in the Jiawula-Chaganbulagen Ag-Pb-Zn deposit, Inner Mongolia. Geological Exploration for Non-ferrous Metals, 8(6): 512-516 (in Chinese with English abstract)
Li ZC, Cai H and Zhu JP. 1994. Direct determination of mineral and sedimentary rock’s age. Geology Geochemistry, (1): 47-52(in Chinese with English abstract)
Liu JM, Zhao SR, Shen J, Jiang N and Huo WG. 1998a. Review on direct isotopic dating of hydrothermal ore-forming processes. Progress in Geophysics, 13(3): 46-55(in Chinese with English abstract)
Liu JM, Shen J, Zhao SR, Huo WG and Jiang N. 1998b. Isotopic dating for metallic deposits and its significance. Geological Exploration for Non-Ferrous Metals, 7(2): 107-113(in Chinese with English abstract)
Liu JM, Zhang R and Zhang QZ. 2004. The regional metallogeny of Daxing’anling, China. Earth Science Frontiers, 11(1): 269-277(in Chinese with English abstract)
Lu YF. 2004. Geokit: A geochemical toolkit for Microsoft excel. Geochimica, 33(5): 459-464(in Chinese with English abstract)
Ludwig KR. 1998. Using Isoplot/Ex: Age of chronological toolkit for Microsoft Excel, version 1.00. Berkeley Geochronnology Center Special Publication, 1: 1-4
Lü ZC, Duan GZ, Liu CQ, Hao LB, Li DC and Wei CD. 2000. Daxing’anling Ag deposit types, metallogenic series and metallogenic geochemical characteristics. Bulletin of Mineralogy, Petrology and Geochemistry, 19(4): 305-309 (in Chinese with English abstract)
Mao JW, Zhang ZC, Zhang ZH and Du AD. 1999. Re-Os isotopic dating of molybdenites in the Xiaoliugou W (Mo) deposit in the northern Qilian Mountains and its geological significance. Geochim. Cosmochim. Acta, 63(11-12): 1815-1818
Mao JW and Wang ZL. 2000. A preliminary study on time limits and geodynamic setting of large-scale metallogeny in east China. Mineral Deposits, 19(4): 289-296 (in Chinese with English abstract)
Mao JW, Xie GQ, Zhang ZH, Li XF, Wang YT, Zhang CQ and Li YF. 2005. Mesozoic large-scale metallogenic pulses in North China and corresponding geodynamic settings. Acta Petrologica Sinica, 21(1): 169-188 (in Chinese with English abstract)
Mao JW, Hu RZ, Chen YC and Wang YT. 2006. Large-Scale Metallogenesis and Large Clusters of Mineral Deposits. Beijing: Geological Publishing House, 58-70(in Chinese)
Mao JW, Xie GQ, Bierlein F, Ye HS, Qü WJ, Du AD, Pirajno F, Li HM, Guo BJ, Li YF and Yang ZQ. 2008. Tectonic implications from Re-Os dating of Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt. Geochim. Cosmochim. Acta, 72(18): 4607-4626
Mao JW, Zhou ZH, Wu G, Jiang SH, Liu CL, Li HM, Ouyang HG and Liu J. 2013. Metallogenic regularity and minerogenetic series of ore deposits in Inner Mongolia and adjacent areas. Mineral Deposits, 32(4): 715-729(in Chinese with English abstract)
Meng E, Xu WL, Yang DB, Qiu KF, Li CH and Zhu HT. 2011. Zircon U-Pb chronology, geochemistry of Mesozoic volcanic rocks from the Lingquan basin in Manzhouli area, and its tectonic implications. Acta Petrologica Sinica, 27(4): 1209-1226(in Chinese with English abstract)
Nakai S, Halliday AN, Kesler SE and Jones HD. 1990. Rb-Sr dating of sphalerites from Tennessce and the genesis of Mississippi Vally-type ore deposit. Nature, 346(6282): 354-357
Nakai S, Halliday AN, Kesler SE Jones HD, Kyle JR and Thomas E. 1993. Rb-Sr dating of sphalerites form Mississippi Valley type (MVT) ore deposits. Cosmochim. Acta, 57(2): 417-427
Nie FJ, Liu Y and Liu YF. 2011. Ore-forming processes of silver-polymetallic deposits occurring Within Tsav-Jiawula region along China-Mongolian Border. Journal of Jilin University (Earth Science Edition), 41(60): 1715-1725 (in Chinese with English abstract)
Pan LJ and Sun ES. 1992. Geological characteristics of the Jiawula silver-lead-zinc deposit, Inner Mongolia. Mineral Deposits, 11(1): 45-53 (in Chinese with English abstract)
Pei RF and Wu LS. 1994. On the evolution of metallogenetic province and metallogeny. Earth Science Frontiers, 1(3-4): 95-99 (in Chinese with English abstract)
Pettke K and Diamond LW. 1996. Rb-Sr dating of sphalerite based on fluid inclusion-host mineral isochrons: A clarification of why it works. Economic Geology, 91(5): 951-956
Qi JP, Chen YJ and Pirajno F. 2005. Geological characteristics and tectonic setting of the epithermal deposits in the Northeast China. Journal of Mineralogy and Petrology, 25(2): 47-59 (in Chinese with English abstract)
Qin KZ, Wang ZT and Pan LJ. 1995. Magmatism and metallogenic systemmatics of the southern Ergun Mo, Cu, Pb, Au and Ag belt, Inner Mongolia, China. Resource Geology, 18(Suppl.1): 159-169
Qin KZ, Tanaka R, Li WS and Ishihara S. 1998. The discovery of Indo-Sinian granites in Manzhouli area: Evidence from Rb-Sr isochron. Acta Petrologica et Mineralogica, 17(3): 235-240 (in Chinese with English abstract)
Qin KZ, Li HM, Li WS and Ishihara S. 1999. Intrusion and mineralization ages of the Wunugetushan porphyry Cu-Mo deposit, Inner Mongolia, northwestern China. Geological Review, 45(2): 180-185 (in Chinese with English abstract)
She HQ, Li HH, Li JW, Zhao SB, Tan G, Zhang DQ, Jin J, Dong YJ and Feng CY. 2009. The metallogenetical characteristics and prospecting direction of the copper-lead-zinc polymetal deposits in the northern-central Daxing’anling mountain, Inner Monglia. Acta Geologica Sinica, 83(10): 1456-1472 (in Chinese with English abstract)
She HQ, Li JW, Xiang AP, Guan JD, Yang YC, Zhang DQ, Tan G and Zhang B. 2012. U-Pb ages of the zircons from primary rocks in middle-northern Daxinganling and its implications to geotectonic evolution. Acta Petrologica Sinica, 28(2): 571-594 (in Chinese with English abstract)
Sheng JF and Fu XZ. 1999. Metallogenic Environment and Copper Polymetallic Ore Deposit Geological Characteristics in the Middle Daxing’anling Mountain. Beijing: Seismological Press, 1-215(in Chinese)
Shu GL, Liu JS and Ma G. 2003. Characteristics of the host strata of Ag-Pb-Zn deposits in Manzhouli, Inner Mongolia and a discussion of their age. Geology in China, 30(3): 297-301(in Chinese with English abstract)
Shuang B, Ge YQ and Liu JX. 2009. Relationship between fluid inclusions and ore-forming of Jiawula Ag-Pb-Zn deposit in Hulunbeir League, Inner Mongolia. Jilin Geology, 28(2): 32-35(in Chinese with English abstract)
Sorokin AA, Yarmolyuk VV, Kotov AB, Sorokin AP, Kudryashov NM and Li JY. 2004. Geochronology of Triassic-Jurassic granitoids in the southern framing of the Mongolia-Okhotsk foldbelt and the problem of Early Mesozoic granite formation in central and eastern Asia. Doklady Earth Sciences, 399(8): 1091-1094
Sun SL. 2001. The study on metallogenic series of Hydrocarbon alkali-fluids in Devonian in Xicheng concentrated mineralization area, West Qinling, Gansu Province. Ph. D. Dissertation. Chengdu: Chengdu University of Technology, 43-44 (in Chinese with English summary)
Tretbar DR, Arehart GB and Christensen JN. 2000. Dating gold deposition in a Carlin-type gold deposit using Rb/Sr methods on the mineral galkhaite. Geology, 28(10): 947-950
Wang DP and Tian XP. 1991. Tectonic geochemical characteristics of Jiawula deposit’s metallogenic volcanic series. Geology and Exploration, (10): 51-56(in Chinese with English abstract)
Wang YB, Tang SH, Wang JH, Zeng PS, Yang ZS, Meng YF and Tian SH. 2004. Rb-Sr dating the pyrite of the Xinqiao Cu-S-Fe-Au deposit, Tongling, Anhui Province. Geological Review, 50(5): 538-542(in Chinese with English abstract)
Wang YX, Yang JD, Chen J, Zhang KJ and Rao WB. 2007. The Sr and Nd isotopic variations of the Chinese Loess Plateau during the past 7Ma: Implications for the East Asian winter monsoon and source areas of loess. Palaeogeography, Palaeoclimatology, Palaeoecology, 249(3-4): 351-361
Wang YX, Gu LX, Zhang ZZ, Wu CZ, Li HM and Yang JD. 2007. Sr-Nd-Pb isotope geochemistry of rhyolite of the Late Carboniferous Dashitou Group in eastern Tianshan. Acta Petrologica Sinica, 23(7): 1749-1755(in Chinese with English abstract)
Wu G, Sun FY, Zhao CS, Li ZT, Zhao AL, Pang QB and Li GY. 2005. Discovery of the Early Paleozoic post-collisional granites in northern margin of the Erguna massif and its geological significance. Chinese Science Bulletin, 50(23): 2733-2743
Wu G, Sun FY, Zhao CS. Ding QF and Wang L. 2007. Fluid inclusion study on gold deposits in northwestern Erguna metallogenic belt, China. Acta Petrologica Sinica, 23(9): 2227-2240(in Chinese with English abstract)
Wu G, Fan CW, Li ZQ, Mi M, Liu J and Zhu MT. 2008.40Ar-39Ar dating of the muscovite in the mylonite of the Mohe ductile shear zone in northern Da Hinggan Mountain and its geological significance. Journal of Chengdu University of Technology (Science & Technology Edition), 35(3): 297-302(in Chinese with English abstract)
Wu G, Mi M, Gao FJ, Li ZY and Qiao CJ. 2010. Ore-forming fluid characteristics and genesis of silver-lead-zinc deposits in the Manzhouli area, Inner Mongolia, China. Earth Science Frontiers, 17(2): 239-255(in Chinese with English abstract)
Wu G, Chen YC, Chen YJ and Zeng QT. 2012. Zircon U-Pb ages of the metamorphic supracrustal rocks of the Xinghuadukou Group and granitic complexes in the Argun massif of the northern Great Hinggan Range, NE China, and their tectonic implications. Journal of Asian Earth Sciences, 49: 214-233
Xu ZG, Chen YC, Wang DH, Chen ZH and Li HM. 2008. The Scheme of the Classification of the Mineragenrtic Units in China. Beijing: Geological Publishing House, 1-138(in Chinese with English abstract)
Yang JH and Zhou XH. 2000. Rb-Sr isochron age and mineralogenetic epoch of ore and gold-carrying mineral of the Linglong gold field in the eastern Shandong Province. Chinese Science Bulletin, 45(14): 1547-1553 (in Chinese)
Yang JH and Zhou XH. 2001. Rb-Sr, Sm-Nd, and Pb isotope systematics of pyrite: Implications for the age and genesis of lode gold deposits. Geology, 29(8): 711-714
Yuan SD, Peng JT, Hu RZ, Li HM, Shen NP and Zhang DL. 2008. A precise U-Pb age on cassiterite from the Xianghualing tin-polymetallic deposit (Hunan, South China). Mineralium Deposita, 43(4): 375-382
Yuan SD, Peng JT, Hao S, Li HM, Geng JZ and Zhang DL. 2011. In situ LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin-polymetallic mineralization. Ore Geology Reviews, 43(1): 235-242
Yuan SD, Zhang DL, Shuang Y, Du AD and Qu WJ. 2012. Re-Os dating of molybdenite from the Xintianling giant tungsten-molybdenum deposit in southern Hunan Province, China and its geological implications. Acta Petrologica Sinica, 28(1): 27-38(in Chinese with English abstract)
Zeng LP. 2010. Geological features of Jiawula Ag-Pb-Zn deposit and its metallogenic control discussion. Nonferrous Metals (Mining Section), 62(3): 34-39(in Chinese with English abstract)
Zhai DG, Wang JP, Liu JJ, Wu SH, Mao GJ, Wang SG and Li YX. 2010. Ore-forming fluids evolution and metallogenic mechamism analysis of the Jiawula Ag-poltmetallic deposit, Inner Mongolia. Mineral. Petrol., 30(2): 68-76(in Chinese with English abstract)
Zhai YS, Yao SZ, Lin XD and Jin FQ. 1992. Metallogenic regularity of iron and copper deposits in the Middle and Lower Valley of the Yangtze River. Mineral Deposits, 11(1): 1-12(in Chinese with English abstract)
Zhai YS, Wang JP, Deng J, Peng RM and Liu JJ. 2008. Temporal-spatial evolution of metallogenic systems and its significance to mineral exploration. Geoscience, 22(2): 143-150(in Chinese with English abstract)
Zhang CQ, Li XH, Yu JJ, Mao JW, Chen FK and Li HM. 2008. Rb-Sr dating of single sphalerites from the Daliangzi Pb-Zn deposit, Sichuan, and its geological significances. Geological Review, 54(4): 532-538(in Chinese with English abstract)
Zhang LC, Chen ZG, Wu HY, Xiang P and Huang SW. 2010. Tectonic-magmatic mineralization and geodynamic of Mongolia-Okhotsk Orogen Deerbugan polymetallic metallogenic belt. Mineral Deposits, 29(Suppl.): 547-548(in Chinese with English abstract)
Zhang RB, Liu JM, Ye J and Chen FK. 2008. Chalcopyrite Rb-Sr isochron age dating and its’ ore-forming significance in Shouwangfen copper deposit, Hebei Province. Acta Petrologica Sinica, 24(6): 1353-1358(in Chinese with English abstract)
Zhao QQ, Sun CB, Jing LH and Wang DP. 2005. Application of structure geochemistry-discrimination analysis for prospecting: Taking the Jiamala silver polymetallic deposit in Hulunbeier league as an example. Mineral Resources and Geology, 19(4): 414-417(in Chinese with English abstract)
Zhao YM and Zhang DQ. 1997. Metallogeny and Prospective Evaluation of Copper-Polymetallic Deposits in the Da Hinggan Mountains and Adjacent Regions. Beijing: Seismological Press, 8-156(in Chinese)
Zheng W, Chen MH, Zhao HJ, Xu LG, Ling SB, Wu Y, Hu YG, Tian Y and Wu XD. 2013. Rb-Sr isochron age of Tiantang Cu-Pb-Zn polymetallic deposit, Guangdong Province and its geological significance. Mineral Deposits, 30(2): 259-272(in Chinese with English abstract)
附中文参考文献
陈毓川, 王平安, 秦克令, 赵东宏, 毛景文. 1994. 秦岭地区主要金属矿床成矿系列的划分及区域成矿规律探讨. 矿床地质, 13(4): 289-298
陈志广. 2010. 中国东北得尔布干成矿带中生代构造-岩浆成矿作用及其地球动力学背景. 博士学位论文. 北京: 中国科学院地质与地球物理研究所, 1-179
陈志广, 张连昌, 卢百志, 李占龙, 吴华英, 相鹏, 黄世武. 2010. 内蒙古太平川铜钼矿成矿斑岩时代、地球化学及地质意义. 岩石学报, 26(5): 1437-1449
程裕淇, 陈毓川, 赵一鸣, 宋天锐. 1983. 再论矿床的成矿系列问题. 中国地质科学院院报, (2): 1-64
葛文春, 吴福元, 周长勇, Rahman AA. 2005. 大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约. 科学通报, 50(12): 1239-1247
葛文春, 吴福元, 周长勇, 张吉衡. 2007. 兴蒙造山带东段斑岩型Cu, Mo矿床成矿时代及其地球动力学意义. 科学通报, 52(20): 2407-2417
韩以贵, 李向辉, 张世红, 张元厚, 陈福坤. 2007. 豫西祁雨沟金矿单颗粒和碎裂状黄铁矿Rb-Sr等时线定年. 科学通报, 52(11): 1307-1311
侯明兰, 蒋少涌, 姜耀辉, 凌洪飞. 2006. 胶东蓬莱金成矿区的S-Pb同位素地球化学和Rb-Sr同位素年代学研究. 岩石学报, 22(10): 2525-2533
胡乔青, 王义天, 王瑞廷, 李建华, 代军治, 王双彦. 2012. 陕西省凤太矿集区二里河铅锌矿床的成矿时代: 来自闪锌矿Rb-Sr同位素年龄的证据. 岩石学报, 28(1): 258-266
江思宏, 聂凤军, 苏永江, 白大明, 刘翼飞. 2010. 蒙古国额尔登特特大型铜-钼矿床年代学与成因研究. 地球学报, 31(3): 289-306
李锦轶. 1998. 中国东北及邻区若干地质构造问题的新认识. 地质论评, 44(4): 339-347
李锦轶, 莫申国, 和政军, 孙桂华, 陈文. 2004. 大兴安岭北段地壳左行走滑运动的时代及其对中国东北及邻区中生代以来地壳构造演化重建的制约. 地学前缘, 11(3): 157-167
李文博, 黄智龙, 许德如, 陈进, 许成, 管涛. 2002. 铅锌矿床Rb-Sr定年研究综述. 大地构造与成矿学, 26(4): 436-441
李宪臣, 秦克章. 1999. 内蒙古甲乌拉-查干铅锌银铜矿床主成矿元素分布规律及意义. 有色金属矿床与勘查, 8(6): 512-516
李志昌, 蔡红, 朱家平. 1994. 矿石、沉积岩年龄的直接测定. 地质地球化学, (1): 47-52
刘建明, 赵善仁, 沈洁, 姜能, 霍卫国. 1998a. 成矿流体活动的同位素定年方法评述. 地球物理学进展, 13(3): 46-45
刘建明, 沈洁, 赵善仁, 霍卫国, 姜能. 1998b. 金属矿床同位素精确定年的方法和意义. 有色金属矿产与勘查, 7(2): 107-113
刘建明, 张锐, 张庆洲. 2004. 大兴安岭地区的区域成矿特征. 地学前缘, 11(1): 269-277
路远发. 2004. Geokit: 一个用VBA构建的地球化学工具软件包. 地球化学, 33(5): 459-464
吕志成, 段国正, 刘丛强, 郝立波, 李殿超, 魏存第. 2000. 大兴安岭地区银矿床类型、成矿系列及成矿地球化学特征. 矿物岩石地球化学通报, 19(4): 305-309
毛景文, 王志良. 2000. 中国东部大规模成矿时限及其动力学背景的初步探讨. 矿床地质, 19(4): 289-296
毛景文, 谢桂青, 张作衡, 李晓峰, 王义天, 张长青, 李永峰. 2005. 中国北方中生代大规模成矿作用的期次及其地球动力学背景. 岩石学报, 21(1): 169-188
毛景文, 胡瑞忠, 陈毓川, 王义天. 2006. 大规模成矿作用与大型矿集区. 北京: 地质出版社, 58-70
毛景文, 周振华, 武广, 江思宏, 刘成林, 李厚民, 欧阳荷根, 刘军. 2013. 内蒙古及邻区矿床成矿规律与成矿系列. 矿床地质, 32(4): 715-729
孟恩, 许文良, 杨德彬, 邱昆峰, 李长华, 祝洪涛. 2011. 满洲里地区灵泉盆地中生代火山岩的锆石U-Pb年代学、地球化学及其地质意义. 岩石学报, 27(4): 1209-1224
内蒙古自治区地质矿产局. 1991. 内蒙古自治区区域地质志. 北京: 地质出版社, 7-498
聂凤军, 刘勇, 刘翼飞. 2011. 中蒙边境查夫-甲乌拉地区中生代银多金属矿床成矿作用. 吉林大学学报(地球科学版), 41(60): 1715-1725
潘龙驹, 孙恩守. 1992. 内蒙古甲乌拉铅锌银矿床地质特征. 有色金属矿产与勘察, 11(1): 45-53
裴荣富, 吴良士. 1994. 金属成矿省演化与成矿. 地学前缘, 1(3-4): 95-99
祁进平, 陈衍景, Pirajno F. 2005. 东北地区浅成低温热液矿床的地质特征和构造背景. 矿物岩石, 25(2): 47-59
秦克章, 田中亮吏, 李伟实, 石原舜三. 1998. 满洲里地区印支期花岗岩Rb-Sr等时线年代学证据. 岩石矿物学杂志, 17(3): 235-240
秦克章, 李惠民, 李伟实, Ishihara S. 1999. 内蒙古乌奴格吐山斑岩铜钼矿床的成岩、成矿时代. 地质论评, 45(2): 180-185
佘宏全, 李红红, 李进文, 赵士宝, 谭刚, 张德全, 金俊, 董英君, 丰成友. 2009. 内蒙古大兴安岭中北段铜铅锌金银多金属矿床成矿规律与找矿方向. 地质学报, 83(10): 1456-1472
佘宏全, 李进文, 向安平, 关继东, 杨郧城, 张德全, 谭刚, 张斌. 2012. 大兴安岭中北段原岩锆石U-Pb测年及其与区域构造演化关系. 岩石学报, 28(2): 571-594
盛继福, 傅先政. 1999. 大兴安岭中段成矿环境与铜多金属矿床地质特征. 北京: 地震出版社, 1-215
舒广龙, 刘继顺, 马光. 2003. 内蒙古满洲里地区银铅锌矿赋矿地层特征及其时代探讨. 中国地质, 30(3): 297-301
双宝, 葛玉琦, 刘继贤. 2009. 内蒙古呼盟地区甲乌拉银铅锌矿床流体包裹体与成矿的关系. 吉林地质, 28(2): 32-35
孙省利. 2001. 西秦岭泥盆系西成矿化集中区烃碱流体成矿系列研究. 博士学位论文. 成都: 成都理工学院, 43-44
王大平, 田筱鹏. 1991. 甲乌拉矿床成矿次火山岩系构造地球化学特征. 地质与勘探, (10): 51-56
王彦斌, 唐索寒, 王进辉, 曾普胜, 杨竹森, 蒙义峰, 田世洪. 2004. 安徽铜陵新桥铜金矿床黄铁矿Rb/Sr同位素年龄数据. 地质论评, 50(5): 538-542
王银喜, 顾连兴, 张遵忠, 吴昌志, 李惠民, 杨杰东. 2007. 东天山晚石炭世大石头群流纹岩Sr-Nd-Pb同位素地球化学研究. 岩石学报, 23(7): 1749-1755
武广, 孙丰月, 赵财胜, 丁淸峰, 王力. 2007. 额尔古纳成矿带西北部金矿床流体包裹体研究. 岩石学报, 23(9): 2227-2240
武广, 范传闻, 李忠权, 糜梅, 刘军, 朱明田. 2008. 大兴安岭北部漠河韧性剪切带白云母40Ar-39Ar定年及地质意义. 成都理工大学学报(自然科学版), 35(3): 297-302
武广, 糜梅, 高峰军, 李宗彦, 乔翠杰. 2010. 满洲里地区银铅锌矿床成矿流体特征及矿床成因. 地学前缘, 17(2): 239-255
徐志刚, 陈毓川, 王登红, 陈郑辉, 李厚民. 2008. 中国成矿区带划分方案. 北京: 地质出版社, 1-138
杨进辉, 周新华. 2000. 胶东地区玲珑金矿矿石和载金矿物Rb-Sr等时线年龄与成矿时代. 科学通报, 45(14): 1547-1553
袁顺达, 张东亮, 双燕, 杜安道, 屈文俊. 2012. 湖南新田岭大型钨钼矿床辉钼矿Re-Os同位素测年及其地质意义. 岩石学报, 28(1): 27-38
曾令平. 2010. 甲乌拉银铅锌矿床地质特征及成矿控制探讨. 有色金属, 62(3): 34-39
翟德高, 王建平, 刘家军, 吴胜华, 毛光剑, 王守光, 李玉玺. 2010. 内蒙古甲乌拉银多金属矿床成矿流体演化与成矿机制分析. 矿物岩石, 30(2): 68-76
翟裕生, 姚书振, 林新多, 金福全. 1992. 长江中下游地区铁、铜等成矿规律研究. 矿床地质, 11(1): 1-12
翟裕生, 王建平, 邓军, 彭润民, 刘家军. 2008. 成矿系统时空演化及其找矿意义. 现代地质, 22(2): 143-150
张长青, 李向辉, 余金杰, 毛景文, 陈福坤, 李厚民. 2008. 四川大梁子铅锌矿床单颗粒闪锌矿铷-锶测年及地质意义. 地质论评, 54(4): 532-538
张连昌, 陈志广, 吴华英, 相鹏, 黄世武. 2010. 蒙古-鄂霍茨克造山带得尔布干多金属成矿带构造-岩浆成矿作用及动力学背景. 矿床地质, 29(增刊): 547-548
张瑞斌, 刘建明, 叶杰, 陈福坤. 2008. 河北寿王坟铜矿黄铜矿铷锶同位素年龄测定及其成矿意义. 岩石学报, 24(6): 1353-1358
赵清泉, 孙传斌, 荆龙华, 王大平. 2005. 构造地球化学-判别分析在找矿中的应用——以呼盟甲乌拉银多金属矿床为例. 矿床与地质, 19(4): 414-417
赵一鸣, 张德全. 1997. 大兴安岭及其邻区铜多金属矿床成矿规律与远景评价. 北京: 地震出版社, 8-156
郑伟, 陈懋弘, 赵海杰, 徐林刚, 凌世彬, 吴越, 胡耀国, 田云, 吴晓东. 2013. 广东天堂铜铅锌多金属矿床Rb-Sr等时线年龄及其地质意义. 矿床地质, 30(2): 259-272