金建明,李有海,张海伦,梁朝宁,唐双焱
1北京工商大学植物资源研究开发北京市重点实验室,北京 100048;2云南民族大学民族药资源化学国家民委-教育部重点实验室,昆明 650500;3中国科学院微生物研究所 中国科学院微生物生理与代谢工程重点实验室,北京 100101
西洋参(Panax quinquefolium L.)又名花旗参、西洋人参、洋参、美国人参、广东人参等,是我国传统的名贵中药材,为五加科人参属植物,原产北美洲的加拿大南部和美国北部,现我国的许多地区都有引种栽培。其味甘、微苦、性寒,可滋阴降火,益气生津,其药用价值有镇静镇惊、安神促智、增强机体免疫、抗心律失常、防血管硬塞、保肝、降血脂等功效。对西洋参的化学成分已经有许多研究报道,其主要活性成分是人参皂苷。西洋参总皂苷中绝大多数属于达玛烷四环三萜类人参皂苷[1,2]。达玛烷四环三萜类人参皂苷根据苷元6 位碳上是否有羟基分为原人参二醇型皂苷如人参皂苷Rb1、Rb2、Rc 和Rd 等(图1)和原人参三醇型皂苷如人参皂苷Rg1、Rg2、Re 和F1等。
稀有人参皂苷compound K 也称人参皂苷CK或人参皂苷C-K,其结构为20(S)-原人参二醇-20-O-β-D-吡喃葡萄糖苷(图1),属原人参二醇型皂苷。人参皂苷compound K 在人参属植物中几乎不存在,首次由土壤细菌降解人参皂苷Rbl、Rb2和Rc 后被发现并鉴定[3]。研究发现人参皂苷compound K 是人参等药材中原人参二醇型皂苷经肠道菌降解后产生的在人体内发挥药效作用的真正代谢活性物[4]。人参皂苷compound K 的生物活性具有多靶点、高活性和低毒性的特点,具有极高的生产价值和应用前景,医药价值很高[5,6]。目前制备人参皂苷compound K 的方法多采用微生物发酵法和酶解法。利用酶解法制备人参皂苷compound K 具有反应条件温和、操作简便、成本低、产物便于纯化等优点[5,7]。
图1 原人参二醇型皂苷结构Fig.1 Chemical structures of protopanaxdiol-type ginsenosides
项目组前期得到了高效催化人参皂苷Rb1产生人参皂苷compound K 的β-糖苷酶。为了研究该β-糖苷酶是否也催化其他原人参二醇型皂苷产生人参皂苷compound K,实验采用原人参二醇型皂苷含量高的西洋参总皂苷,详细分析了西洋参总皂苷经该β-糖苷酶完全催化水解后的成分组成,为将来进一步采用西洋参总皂苷等高效制备人参皂苷compound K 奠定基础。
Bruker Avance 400 MHz 型核磁共振波谱仪;Agilent 6520 LC/MS 质谱仪;岛津Lc-20A 高效液相色谱仪。柱层析硅胶(60~100 目)和薄层层析硅胶板H(青岛海洋化工有限公司);RP-C18 反相层析材料和RP-C18 高效薄层板(Merck 公司);乙腈为色谱纯,其余试剂均为分析纯;西洋参总皂苷购自南京泽朗医药生物科技有限公司。标准品人参皂苷Rb1(批号20110526)、Rb2(批号20120311)、Rc(批号20120617)和Rd(批号20120621)购自宝鸡辰光生物科技有限公司。
将β-糖苷酶LacS 突变株接种到LB 培养基中(含100 mmol/L 卡那霉素),接种量1%,37 ℃、280 rpm 摇床培养12 h 后将种子液转接到600 mL 诱导培养基中(含100 mmol/L 卡那霉素),接种量1%,30 ℃、280 rpm 摇床培养21 h。培养液10000 rpm 离心10 min,沉淀加入60 mL Mc 缓冲液重悬(0.2 mol/L 磷酸氢二钠和0.1 mol/L 柠檬酸,pH=5.5),超声破细胞后12000 rpm 离心10 min,取上清液于60 ℃水浴中静置10 min 后再次12000 rpm 离心10 min,上清液即β-糖苷酶液[8]。
约60 mL 酶液加入到75 mL 含7.5 g 西洋参总皂苷的Mc 缓冲液中,水浴恒温70 ℃反应过夜使酶催化水解反应完全(19 h)[8]。
135 mL 水解反应液用等体积正丁醇萃取三次,合并萃取液,减压浓缩干燥后进行硅胶柱层析,用二氯甲烷甲醇进行梯度洗脱,分为五个部分(Fr I~Fr V)。各部分再经RP-C18 柱层析,采用甲醇水进行梯度洗脱纯化各化合物。Fr I 部分1.3 g 经50%~80%甲醇水梯度洗脱纯化得到化合物1(0.807 g);Fr II 部分0.2 g 用50%~60%甲醇水梯度洗脱得到化合物6(0.049 g);Fr III 部分0.6 g 经60%~75%甲醇水梯度洗脱得到化合物2(0.311 g);Fr IV 部分0.58 g 用20%~75%甲醇水梯度洗脱得到化合物3(0.152 g)、7(0.070 g)和4(0.046 g)。Fr V 部分1.036 g 用10%~50%甲醇水梯度洗脱得到化合物5(0.481 g)。
西洋参总皂苷及其水解产物的HPLC 方法在参考文献的基础上略有修改[9]。西洋参总皂苷及其水解产物配制成3 mg/mL。HPLC 条件如下:色谱柱:Waters symmetry C18色谱柱(4.6 × 250 mm,5 μm);流动相:乙腈(A)和水(B);二元高压梯度洗脱:0~2.5 min,20% A;2.5~5 min,20%~25% A;5~10 min,25% A;10~30 min,25%~40% A;30~45 min,40%~70% A;45~60 min,70% A;流速:0.7 mL/min;检测波长:203 nm;柱温:35 ℃;进样量:10 μL。
为了研究β-糖苷酶催化总皂苷后水解产物的成分组成及原人参二醇型皂苷生成人参皂苷compound K 的效率,将西洋参总皂苷经β-糖苷酶催化水解过夜(19 h),水解产物经TLC 检测初步证明原人参二醇型皂苷Rb1已经完全被水解。HPLC 检测分析再次确定西洋参总皂苷中的原人参二醇型皂苷人参皂苷Rb1(8)、Rc(9)、Rb2(10)和Rd(11)已经完全水解(图2B)。进一步延长水解反应时间后的水解产物经HPLC 检测分析皂苷的成分和含量没有变化,表明19 h 水解反应已经完全。水解产物中主要有二个原人参二醇型皂苷:人参皂苷compound K(1)和人参皂苷Mc(2);四个原人参三醇型皂苷:人参皂苷Rg1(3)、人参皂苷Rg2(4)、人参皂苷Re(5)和人参皂苷F1(6);以及拟人参皂苷F11(7)。其中人参皂苷compound K 是西洋参总皂苷水解产物中含量最高的成分。
图2 西洋参总皂苷水解前(A)和水解后(B)以及人参皂苷compound K(C)的HPLC 色谱图Fig.2 HPLC chromatograms of total ginsenoside extract of P.quinquefolium before (A)and after (B)hydrolysis as well as ginsenoside compound K standard (C)
化合物1 白色粉末,易溶于甲醇。HR-ESI-MS m/z 645.4342 [M+Na]+(calcd for C36H62NaO8,645.4337);1H NMR (400 MHz,pyridine-d5)δH:5.19 (1H,d,J=7.6 Hz,Glc-H-1),1.63 (3H,s,H-21),1.60 (6H,s,H-26,27),1.23 (3H,s,H-28),1.00 (3H,s,H-29),1.00 (3H,s,H-30),0.95 (3H,s,H-18),0.89 (3H,s,H-19);13C NMR δC:39.4 (C-1),28.3 (C-2),78.1 (C-3),39.6 (C-4),56.4 (C-5),18.8 (C-6),35.2 (C-7),40.1 (C-8),50.3 (C-9),37.4 (C-10),30.8 (C-11),70.2 (C-12),49.7(C-13),51.5 (C-14),31.0 (C-15),26.7 (C-16),51.7 (C-17),16.4 (C-18),16.1 (C-19),83.3 (C-20),22.4 (C-21),36.2 (C-22),23.3 (C-23),126.0 (C-24),131.0 (C-25),25.8 (C-26),17.8(C-27),28.7 (C-28),16.4 (C-29),17.4 (C-30),98.3 (C-20-Glc-1),75.2 (C-20-Glc-2),79.3 (C-20-Glc-3),71.6 (C-20-Glc-4),78.3 (C-20-Glc-5),62.9 (C-20-Glc-6)。以上数据和文献报道的基本一致[10],故化合物1 鉴定为人参皂苷compound K,即20(S)-原人参二醇-20-O-β-D-吡喃葡萄糖苷。
化合物2 白色粉末,易溶于甲醇。1H NMR(400 MHz,pyridine-d5)δH:5.67 (1H,s,Araf-H-1),5.14 (1H,d,J=6.0Hz,Glc-H-1),1.67 (3H,s,H-27),1.63 (6H,s,H-21,26),1.23 (3H,s,H-28),1.04 (3H,s,H-29),1.00 (3H,s,H-30),0.94 (3H,s,H-18),0.89 (3H,s,H-19);13C NMR δC:39.6 (C-1),28.3 (C-2),78.1 (C-3),39.6 (C-4),56.4 (C-5),18.8 (C-6),35.2 (C-7),40.1 (C-8),50.3 (C-9),37.4 (C-10),30.8 (C-11),70.3 (C-12),49.5(C-13),51.2 (C-14),30.9 (C-15),26.7 (C-16),51.7 (C-17),16.4 (C-18),16.1 (C-19),83.4 (C-20),22.4 (C-21),36.2 (C-22),23.2 (C-23),126.1 (C-24),131.1 (C-25),25.8 (C-26),17.9(C-27),28.7 (C-28),16.4 (C-29),17.4 (C-30),98.1 (C-20-Glc-1),75.1 (C-20-Glc-2),79.3 (C-20-Glc-3),72.2 (C-20-Glc-4),76.6 (C-20-Glc-5),68.5 (C-20-Glc-6),110.2 (C-Ara-1),83.4 (C-Ara-2),78.9 (C-Ara-3),86.1 (C-Ara-4),62.7 (C-Ara-5)。以上数据和文献报道的基本一致[11],故化合物2 鉴定为人参皂苷Mc,即20(S)-原人参二醇-20-O-α-L-呋喃阿拉伯糖基-(1→6)-β-D-吡喃葡萄糖苷(图1)。
化合物3 白色粉末,易溶于甲醇。1H NMR(400 MHz,pyridine-d5)δH:5.17 (1H,d,J=8.0Hz,20-Glc-H-1),5.02 (1H,d,J=8.0Hz,6-Glc-H-1),2.07 (3H,s,H-21),1.61 (3H,s,H-26),1.60 (6H,s,H-27,29),1.52 (3H,s,H-28),1.16 (3H,s,H-18),1.04 (3H,s,H-19),0.81 (3H,s,H-30);13C NMR δC:39.7 (C-1),27.9 (C-2),78.8 (C-3),40.4(C-4),61.4 (C-5),75.5 (C-6),45.1 (C-7),41.1(C-8),50.0 (C-9),39.4 (C-10),30.7 (C-11),70.2 (C-12),49.2 (C-13),51.6 (C-14),31.0 (C-15),26.6 (C-16),51.4 (C-17),17.6 (C-18),17.8(C-19),83.3 (C-20),22.2 (C-21),36.1 (C-22),23.2 (C-23),126.0 (C-24),131.0 (C-25),25.8(C-26),17.6 (C-27),31.8 (C-28),16.4 (C-29),17.2 (C-30),98.3 (C-20-Glc-1),75.6 (C-20-Glc-2),79.3 (C-20-Glc-3),71.6 (C-20-Glc-4),78.1(C-20-Glc-5),62.9 (C-20-Glc-6),106.0 (C-6-Glc-1),75.5 (C-6-Glc-2),80.2 (C-6-Glc-3),71.9 (C-6-Glc-4),79.7 (C-6-Glc-5),63.1 (C-6-Glc-6)。以上数据和文献报道的基本一致[12],故化合物3 鉴定为人参皂苷Rg1,即6-O-β-D-吡喃葡萄糖基-20(S)-原人参三醇-20-O-β-D-吡喃葡萄糖苷。
化合物4 白色粉末,易溶于甲醇。1H NMR(400 MHz,pyridine-d5)δH:6.49 (1H,s,Rha-H-1),5.26 (1H,d,J=6.4Hz,Glc-H-1),2.12 (3H,s,H-28),1.79 (3H,d,J=6.0,Rha-H-6),1.68 (3H,s,H-26),1.63(3H,s,H-27),1.39(3H,s,H-30),1.35(3H,s,H-21),1.19 (3H,s,H-19),0.96 (3H,s,H-18),0.93 (3H,s,H-29);13C NMR δC:39.6 (C-1),27.7 (C-2),78.3 (C-3),40.0 (C-4),60.8 (C-5),74.3 (C-6),46.0 (C-7),41.2 (C-8),49.6 (C-9),41.1 (C-10),32.0 (C-11),71.0 (C-12),48.1 (C-13),51.6 (C-14),31.2 (C-15),26.8 (C-16),54.6(C-17),17.6 (C-18),17.6 (C-19),72.9 (C-20),27.0 (C-21),35.7 (C-22),22.9 (C-23),126.3 (C-24),130.7 (C-25),25.8 (C-26),16.9 (C-27),32.1 (C-28),17.1 (C-29),17.1 (C-30),101.8 (C-6-Glc-1),79.4 (C-6-Glc-2),78.5 (C-6-Glc-3),72.5(C-6-Glc-4),78.3 (C-6-Glc-5),63.0 (C-6-Glc-6),101.9 (C-Rha-1),72.2 (C-Rha-2),72.4 (C-Rha-3),74.1 (C-Rha-4),69.4 (C-Rha-5),18.7 (C-Rha-6)。以上数据和文献报道的基本一致[13],故化合物4 鉴定为人参皂苷Rg2,即20(S)-原人参三醇-6-O-α-L-吡喃鼠李糖基-(1→2)-β-D-吡喃葡萄糖苷。
化合物5 白色粉末,易溶于甲醇。1H NMR(400 MHz,pyridine-d5)δH:6.47 (1H,s,Rha-H-1),5.24 (1H,d,J=6.4Hz,6-Glc-H-1),5.15 (1H,d,J=8.0 Hz,20-Glc-H-1),2.09 (3H,s,H-21),1.76(3H,d,J=6.0Hz,Rha-H-6),1.60 (6H,s,H-26,27),1.58 (3H,s,H-29),1.35 (3H,s,H-28),1.16(3H,s,H-18),0.96 (3H,s,H-19),0.94 (3H,s,H-30);13C NMR δC:39.6 (C-1),27.7 (C-2),78.6(C-3),39.4 (C-4),60.8 (C-5),74.6 (C-6),46.0(C-7),41.2 (C-8),49.7 (C-9),40.0 (C-10),30.7(C-11),70.2 (C-12),49.0 (C-13),51.4 (C-14),30.9 (C-15),26.6 (C-16),51.7 (C-17),17.3 (C-18),17.2 (C-19),83.3 (C-20),22.3 (C-21),36.0(C-22),23.3 (C-23),126.0 (C-24),130.9 (C-25),25.8 (C-26),17.6 (C-27),32.2 (C-28),17.5(C-29),17.8 (C-30),98.2 (C-20-Glc-1),75.1 (C-20-Glc-2),79.1 (C-20-Glc-3),71.5 (C-20-Glc-4),78.2 (C-20-Glc-5),62.9 (C-20-Glc-6),101.9 (C-6-Glc-1),79.4 (C-6-Glc-2),78.4 (C-6-Glc-3),72.5(C-6-Glc-4),78.3 (C-6-Glc-5),63.1 (C-6-Glc-6),101.8 (C-Rha-1),72.3 (C-Rha-2),72.4 (C-Rha-3),74.1 (C-Rha-4),69.4 (C-Rha-5),18.7 (C-Rha-6)。以上数据和文献报道的基本一致[14],故化合物5 鉴定为人参皂苷Re,即20-O-β-D-吡喃葡萄糖基-20(S)-原人参三醇-6-O-α-L-吡喃鼠李糖基-(1→2)-β-D-吡喃葡萄糖苷。
化合物6 白色粉末,易溶于甲醇。1H NMR(400 MHz,pyridine-d5)δH:5.21 (1H,d,J=6.8 Hz,Glc-H-1),2.00 (3H,s,H-21),1.60 (9H,s,H-26,27,29),1.47 (3H,s,H-28),1.10 (3H,s,H-18),1.02 (3H,s,H-19),0.98 (3H,S,H-30);13C NMR δC:39.6 (C-1),28.1 (C-2),78.3 (C-3),40.3(C-4),61.7 (C-5),67.7 (C-6),47.5 (C-7),41.2(C-8),49.9 (C-9),39.4 (C-10),30.9 (C-11),70.2 (C-12),49.1 (C-13),51.4 (C-14),30.8 (C-15),26.6 (C-16),51.6 (C-17),17.6 (C-18),17.5(C-19),83.3 (C-20),22.3 (C-21),36.1 (C-22),23.2 (C-23),126.0 (C-24),131.0 (C-25),25.8(C-26),17.8 (C-27),32.0 (C-28),16.5 (C-29),17.4 (C-30),98.3 (C-20-Glc-1),75.1 (C-20-Glc-2),78.5 (C-20-Glc-3),71.5 (C-20-Glc-4),79.3(C-20-Glc-5),62.9 (C-20-Glc-6)。以上数据和文献报道的基本一致[15],故化合物6 鉴定为人参皂苷F1,即20(S)-原人参三醇-20-O-β-D-吡喃葡萄糖苷。
化合物7 白色粉末,易溶于甲醇。1H NMR(400 MHz,pyridine-d5)δH:6.48 (1H,s,Rha-H-1),5.25 (1H,d,J=6.8 Hz,Glc-H-1),2.10 (3H,s,H-28),1.78 (3H,d,J=6.4 Hz,Rha-H-6),1.46 (3H,s,H-27),1.33 (3H,s,H-29),1.26 (3H,s,H-21),1.25 (3H,s,H-26),1.21 (3H,s,H-18),0.95 (3H,s,H-19),0.90 (3H,s,H-30);13C NMR δC:39.5 (C-1),27.7 (C-2),78.3 (C-3),40.0 (C-4),60.8 (C-5),74.3 (C-6),46.0 (C-7),41.2 (C-8),49.6 (C-9),41.1 (C-10),32.0 (C-11),71.0 (C-12),48.1(C-13),51.6 (C-14),31.2 (C-15),26.8 (C-16),54.6 (C-17),17.6 (C-18),17.6 (C-19),86.7 (C-20),27.0 (C-21),32.8 (C-22),28.8 (C-23),85.6(C-24),70.3 (C-25),27.2 (C-26),27.6 (C-27),32.4 (C-28),18.2 (C-29),16.9 (C-30),101.8 (C-6-Glc-1),79.4 (C-6-Glc-2),78.6 (C-6-Glc-3),72.6(C-6-Glc-4),78.4 (C-6-Glc-5),63.1 (C-6-Glc-6),101.9 (C-Rha-1),72.3 (C-Rha-2),72.4 (C-Rha-3),74.2 (C-Rha-4),69.4 (C-Rha-5),18.7 (C-Rha-6)。以上数据和文献报道的基本一致[16],故化合物7 鉴定为拟人参皂苷F11,即达玛-3β,6α,12β,25-四羟基-(20S,24R)-环氧-6-O-α-L-吡喃鼠李糖基-(1→2)-β-D-吡喃葡萄糖苷。
HPLC 检测分析结果表明实验用的西洋参总皂苷中人参皂苷Rb1是含量最高的原人参二醇型皂苷成分,其次是人参皂苷Rd、Rc 和Rb2(图2A)。文献也报道在西洋参总皂苷中,人参皂苷Rb1、Rd、Rc和Rb2是其主要原人参二醇型皂苷成分,且人参皂苷Rb1是其中含量最高的原人参二醇型皂苷[1,2,9,17]。研究已表明人参皂苷compound K 可由原人参二醇型皂苷Rb1、Rb2、Rc 和Rd 等通过酶水解而产生[5,7]。从西洋参总皂苷的水解产物中分离得到的原人参二醇型皂苷除人参皂苷compound K 外,另外得到人参皂苷Mc,但没有分离到原人参二醇型皂苷Rb1、Rb2、Rc 或Rd。HPLC 检测分析也证明水解产物中只存在原人参二醇型皂苷compound K 和Mc,而不存在主要原人参二醇型皂苷Rb1、Rb2、Rc和Rd(图2B)。HPLC 检测分析证明西洋参总皂苷中并不存在人参皂苷compound K 和Mc(图2A),这表明人参皂苷Rb1、Rb2、Rc 和Rd 已经完全被该β-糖苷酶催化水解,而人参皂苷Mc 不能进一步被催化水解产生人参皂苷compound K 或这种催化活性很低。
原人参二醇型皂苷的糖基连接在C-3 或C-20的羟基上。原人参二醇型皂苷Rb1、Rb2、Rc 和Rd在C-3 的羟基上连接有糖基,而水解产物人参皂苷compound K 和Mc 在C-3 的羟基上都没有糖基,因此推断该β-糖苷酶能将西洋参中原人参二醇型皂苷的C-3 的羟基的糖基全部水解。
人参皂苷Rc 和Rb2的分子量相同而且结构也很相似,区别在于连接在苷元C-20 的糖基不同:人参皂苷Rc 是一个呋喃阿拉伯糖基连接在C-20 的葡萄糖基的6 位羟基上,而人参皂苷Rb2是一个吡喃阿拉伯糖基连接在C-20 的葡萄糖基的6 位羟基上(图1)。人参皂苷Rc 经该β-糖苷酶水解可产生人参皂苷Mc,如进一步水解可产生人参皂苷compound K;人参皂苷Rb2经该β-糖苷酶水解可产生人参皂苷compound K,但不可能产生人参皂苷Mc。由于从水解产物中只分离到人参皂苷compound K和Mc,表明该β-糖苷酶能水解C-20 的葡萄糖基上的吡喃阿拉伯糖基,但不能水解C-20 的葡萄糖基上的呋喃阿拉伯糖基或水解呋喃阿拉伯糖基的活性很低。
1 Su J(苏健),Li YH(李海舟),Yang CR(杨崇仁).Studies on saponin constituents in roots of Panax quinquefolium.China J Chin Mater Med(中国中药杂志),2003,28:830-833.
2 Wang L(王蕾),Wang YP(王英平),Xu SQ(许世泉),et al.A review on studies of the components and pharmacological activity of Panax quinquefolium L.Spec Wild Econ Anim Plant Res(特产研究),2007,3:73-77.
3 Yoshika I,Sugawara T,Imai K,et al.Soil bacterial hydrolysis:leading to genuine aglycone.V.on ginsenosides-Rb1,Rb2and Re of the ginseng root saponins.Chem Pharm Bull,1972,20:2418-2421.
4 Hasegawa H.Proof of the mysterious efficacy of ginseng basic and clinical trials metabolic activation of ginsenoside deglycosylation by in testinal bacteria and esterification with fatty acid.J Pharmacol Sci,2004,95:153-157.
5 Zhou W(周伟),Zhou P(周珮).Advances in the study of ginsenoside compound K.Acta Pharm Sin(药学学报),2007,42:917-923.
6 Li XP(李相鹏),Wang P(王鹏),Li YX(李英霞).Progress in pharmacological actions of ginsenoside compound K,an activemetabolite of protopanaxadiol type saponins.Chin J Pharmacol Toxicol,2011,25:97-101.
7 Li X(李学),Zang P(臧埔),Zhang LX(张连学),et al.Research progress on ginsenoside CK production by microbial transformation.Food Sci(食品科学),2012,33:323-327.
8 Liang CN(梁朝宁),Xiong DD(熊丹丹),Tang SY(唐双焱).A screening method for mutations produce high yield of rare ginsenosides from major ginsenosides.CN201310246807.9,2013-6-20.
9 Meng Q(孟琼),Qian ZM(钱正明),Chen ZY(陈治宇),et al.HPLC characteristics of Panax quinquefolium.Chin J Pharm Anal(药物分析杂志),2010,30:791-795.
10 Haruyo K,Shuichi S,Yoshiteru I,et al.Studies on the saponins of ginseng IV.on the structure and enzymatic hydrolysis of ginsenoside-Ra1.Chem Pharm Bull,1982,30:2393-2398.
11 Bae EA,Choo MK,Park EK,et al.Metabolism of ginsenoside Rc by human intestinal bacteria and its related antiallergic activity.Biol Pharm Bull,2002,25:743-747.
12 Shoji Y,Kiyoko K,Osamu T.Study on dammarane-type saponins of roots,leaves,flower-buds and fruits of Panax ginseng C.A.Meyer.Chem Pharm Bull,1979,27:88-92.
13 Yang XW(杨秀伟).Complete assignment of1H and13C NMR chemical shifts of 20(R)-ginsenoside Rg2and 20(S)-ginsenoside Rg2.Chin J Magn Reson(波谱学杂志),2000,17:9-15.
14 Zeng J(曾江),Cui XM(崔秀明),Zhou JM(周家明),et al.Studies on chemical constituents from rhizomes of Panax notogingseng.J Chin Medi Mater(中药材),2007,30:1388-1391.
15 Song JP(宋建平),Zeng J(曾江),Cui XM(催秀明),et al.Studies on chemical constituents from rhizomes of Panax notoginseng(Ⅱ).J Yunnan Univ(云南大学学报),2007,29:287-290.
16 Tanaka O,Yahara S.Dammarane saponins of leaves of Panax pseudo-ginseng subsp.Himalaicus.Phytochem,1978,17:1353-1358.
17 Zhai WM(翟为民),Yuan YS(袁永生),Zhou YX(周玉新),et al.HPLC fingerprints identification of Panax ginseng C.A.Mey.,P.quinquefolium L.and P.notoginseng(Burk.F.H.Chen).China J Chin Mater Med(中国中药杂志),2001,26:481-482.