■
由于离散型随机变量的分布列、期望与方差与现实生活联系密切,能充分体现数学的应用价值,也符合高考发展的方向,是近几年高考考查的热点与重点内容. 预计在今后的高考中,它仍然是考查的重点,题型有选择题、填空题、解答题,不同的地区,在命题设计上不尽相同,但以解答题为主的可能性更大.
■
求离散型随机变量的期望和方差,一般先根据随机变量的意义,确定随机变量可以取哪些值,然后根据随机变量取这些值的意义求出取这些值的概率,列出分布列,再根据数学期望和方差的公式计算. 这类题多为解答题,常常综合考查排列组合知识、随机事件的概率等,有时还会根据概率、期望、方差等数据对某些现象进行说理. 因此在复习时要注意对概率综合题的研究,既要落实“模型题”训练,又要注重从生活情境出发进行思考.
■
■ 根据以往的经验,某工程施工期间的降水量X(单位:mm)对工期的影响如下表. 历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9,求工期延误天数的均值与方差.
■
破解思路 先根据条件信息求出Y=0,2,6,8时的相应概率,列出Y的分布列,再根据分布列计算期望和方差. 这类题为容易题,体现对分布列、期望、方差等的最低要求.
经典答案 由已知条件和概率的加法公式可得到:P(X<300)=0.3,P(300≤X<700)=P(X<700)-P(X<300)=0.7-0.3=0.4,P(700≤X<900)=P(X<900)-P(X<700)=0.9-0.7=0.2,P(X≥900)=1-P(X<900)=1-0.9=0.1. 所以Y的分布列为:
■
于是,EY=0×0.3+2×0.4+6×0.2+10×0.1=3,DY=9.8. 故工期延误天数的均值为3,方差为9.8.?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇
■ 一个袋中有若干个大小相同的黑球、白球和红球. 已知从袋中任意摸出1个球,得到黑球的概率是■;从袋中任意摸出2个球,至少得到1个白球的概率是■.
(1)若袋中共有10个球,①求白球的个数;②从袋中任意摸出3个球,记得到白球的个数为ξ,求随机变量ξ的数学期望Eξ.
(2)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于■,并指出袋中哪种颜色的球个数最少.
破解思路 (1)方程思想. 先根据条件建立方程,确定白球数,再确定随机变量ξ的可能取值,并求出相应的概率,求得分布列和期望.
(2)先设定两种球的个数,表示出相应的概率,由概率关系建立不等式,得到两个未知数间的关系,从而论证结论.
经典答案 (1)①记“从袋中任意摸出2个球,至少得到1个白球”为事件A,设袋中白球的个数为x,则P(A)=1-■=■,得到x=5. 故白球有5个.
②随机变量ξ的取值为0,1, 2,3,分布列是:
■
ξ的数学期望Eξ=■×0+■×1+■×2+■×3=■.
(2)证明:设袋中有n个球,其中y个黑球,由题得y=■n,所以2y ■ 品酒师需定期接受酒味鉴别功能测试,一种通常采用的测试方法如下:拿出n瓶外观相同但品质不同的酒让其品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这n瓶酒,并重新按品质优劣为它们排序,这称为一轮测试. 根据一轮测试中的两次排序的偏离程度的高低为其评分.现设n=4,分别以a1,a2,a3,a4表示第一次排序时被排为1,2, 3,4的四种酒在第二次排序时的序号,并令X=1-a1+2-a2+3-a3+4-a4,则X是对两次排序的偏离程度的一种描述. (1)写出X的可能值集合; (2)假设a1,a2,a3,a4等可能地为1,2,3,4的各种排列,求X的分布列; (3)某品酒师在相继进行的三轮测试中,都有X≤2,①试按(2)中的结果,计算出现这种现象的概率(假定各轮测试相互独立);②你认为该品酒师的酒味鉴别功能如何?说明理由. 破解思路 准确理解题意是确定随机变量X的取值的关键. 分析a1,a3与a2,a4中奇数、偶数的个数,确定X的奇偶性,然后估算X的范围,并逐一检验;借助树状图列出所有可能情形,计算X值相应的概率,得到分布列;通过计算概率,判断该品酒师酒味鉴别的能力,并说明理由. 经典答案 (1)由于1,2,3,4中奇数与偶数各有两个,所以a2,a4中奇数个数与a1,a3中偶数个数相同,所以1-a1+2-a2+3-a3+4-a4的奇偶性相同,从而X的可能值必为偶数,且非负,不大于8,故X的可能值集合为{0,2,4,6,8}. (2)列树状图可得1,2,3,4的排列共有24种,计算得X的分布列如下: ■ (3)①由(2)知P(X≤2)=P(X=0)+P(X=2)=■,又各轮测试相互独立,所以三轮测试都有X≤2的概率为P=■■=■. ②由于P=■■=■<■是一个很小的概率,所以如果仅凭随机猜测得到三轮测试都有X≤2的结果可能性非常小,因此我们认为该品酒师确实有良好的味觉鉴别能力,不是随机猜测的. ■ 1. 某中学选派40名同学参加北京市高中生技术设计创意大赛的培训,他们参加培训的次数统计如下表所示: ■ (1)从这40人中任意选3名学生,求这3名同学中至少有2名同学参加培训次数恰好相等的概率; (2)从40人中任选2名学生,用X表示这两人参加培训次数之差的绝对值,求随机变量X的分布列及数学期望EX. 2. 某高校的自主招生考试数学试卷共有8道选择题,每个选择题都给了4个选项(其中有且仅有一个是正确的). 评分标准规定:每题只选1项,答对得5分,不答或答错得0分. 某考生每道题都给出了答案,已确定有4道题的答案是正确的,而其余的题中,有两道题每题都可判断其中两个选项是错误的,有一道题可以判断其中一个选项是错误的,还有一道题因不理解题意只能乱猜. 对于这8道选择题,试求: (1)该考生得分为40分的概率; (2)该考生所得分数ξ的分布列及数学期望Eξ. 3. 文科班某同学参加某省学业水平测试,物理、化学、生物获得等级A和获得等级不是A的机会相等,物理、化学、生物获得等级A的事件分别记为W1,W2,W3,物理、化学、生物获得等级不是A的事件分别记为■,■,■. (1)试列举该同学这次水平测试中物理、化学、生物成绩是否为A的所有可能结果(如三科成绩均为A记为(W1,W2,W3)); (2)求该同学参加这次水平测试获得两个A的概率; (3)试设计一个关于该同学参加这次水平测试物理、化学、生物成绩情况的事件,使该事件的概率大于85%,并说明理由.