月球磁场建模研究

2013-12-06 08:59黄朝艳
测绘工程 2013年6期
关键词:边值场源月球

黄朝艳,刘 浩,苏 斌,赵 华

(南京航空航天大学 航天学院,江苏 南京 210016)

月球磁场是月球的物理特征、内部结构和空间环境研究的基础[1-2]。将月球磁场看成障碍物或者简单地近似成偶极子场已无法解释关于月球磁层的一些新现象[3],精确的月球磁场模型对月球与太阳风相互作用的深入研究,对月球探测器的轨道控制和着陆器的防护设计,以及对建立合理的月球化学演化模型等都具有非常重要的意义[3-4]。

月球没有全球性磁场,月表上分布着各种强度的局地磁异常,月球磁场起源的物理本质尚无法确定[2,5]。现阶段的月球磁场建模强烈依赖于观测数据,本文对各种建模方法进行对比分析,对下一代高精度月球磁场建模和类月天体磁场建模具有一定的借鉴价值。

1 月球磁场建模

1.1 观测数据处理

围绕外部磁场去除。外部磁场主要来自地磁场和太阳风磁场,在月球轨道上的不同位置对应的空间磁场环境不同[6-7]。目前,主要通过低次多项式法[8-14]和Akaike’s贝叶斯信息准则[15-16]建模,然后从观测数据中减去模型磁场。低次多项式法以均匀场或二次多项式拟合外部磁场,能较好地描述平静时期随空间变化的外部磁场,得到了广泛的应用[7-8,13-14],但不 能用于 太 阳 风 活 动 区 的 磁 场 数 据 处理。Akaike’s贝叶斯信息准则能有效地进行数据光滑处理,能描述外部磁场的快速变化,可用于太阳风活动区[11,16]。但在应用中需假设拟合参数和拟合残差服从正态分布,且整个处理过程中涉及的统计假设并非唯一,求解中采用枚举法而非解析法,故得到的最优解还有待进一步改进。

1.2 月球磁场建模方法

现有的数学建模方法主要有二维移动平均法[12-13]和经验 幂 律 法[7,17],物 理 建 模 方 法 有 等 效 场源法[9,16]、边 值 法[11]、球 谐 分 析 法[9-10,18]和 撞 击 模拟法[1]。

1.2.1 二维移动平均法

该方法是一种数据光滑处理技巧,属于图像处理技术范畴,常用于图像的平滑处理和数据的补充,以数据分辨率为代价来换取数据的光滑度,适用于探测数据的轨道高度变化缓慢的区域[12-13]。对于全球磁场观测数据,轨道高度变化十分明显,二维移动平均法会带来累积误差,极大地降低数据的分辨率。

1.2.2 经验幂律法

假设磁场与高度之间满足某种幂律关系,通过不同高度的观测数据来确定幂指数。同一个幂指数只适用于一个特定的小区域,且经验幂律法只能在纵向上扩充磁场数据,无法填补水平方向上的数据缺失[17]。为保证模型的精确性,在确定幂指数时还需尽可能取小的高度间隔。

1.2.3 等效场源法

该方法是目前月球磁场物理建模领域应用最多的方法,将月球局部磁异常归因于月表或月表之下分布的若干等效场源,通过观测数据反演出场源的位置、方向和强度。常用的等效场源是磁偶极子和磁单极子,后者是线性的,场源数量可根据建模区域的具体特征来选择[14,16]。对范围较大或分布较复杂的区域,采用网格化建模,能在保持数据分辨率的同时有效地去除噪声,十分适合处理轨道磁场测量数据,实用性较强,但本质上是一种基于轨道测量的数据光滑处理方法,不能为建模区域的磁化情况提供参考,且网格越小待求参数越多,计算量大。此方法在Moscoviense区的建模结果如图1所示[9],能较好地描述中心磁异常,与观测场符合较好。

图1 Moscoviense地区30km高度上的月球磁场[9]

对月球磁场而言,目前的测量信息还远不够确定所有未知参数,且反演问题没有唯一解、求解较复杂,等效场源量大时,计算量十分惊人。鉴于目前的计算能力,若要得到反演结果,则必须对场源的位置或取向做出一些人为的假定,这些假定在物理上尚无法给出合理解释。

1.2.4 边值法

边值可看作是场源的另一种表现形式,可以通过观测数据和格林函数来反演磁场边值。Tsunakawa等[11]利用边值法绘制了月球全球磁图,完整地呈现了月球局地强磁异常的分布特征。同样地,边值法计算量庞大,现有的计算资源甚至无法直接对全球数据进行整体处理,需要分区处理。另外,同一个场可能对应不同的场源或者边值关系。边值法为解释等效场源的物理本质提供了一个方向。

1.2.5 球谐分析法

采用球谐模型来表示全球磁场的标量位,通过观测数据拟合球谐系数,广泛应用于天体磁场建模。球谐模型的空间分辨率与模型截断水平相关,而球谐系数随截断水平急增,计算量和存储量都十分惊人。建立精确的球谐模型需要大量均匀覆盖全球的测量数据。鉴于目前的数据现状,直接拟合误差较大。等效偶极子法[9]和协方差分析法[10]分别与球谐分析法相结合被成功地应用于月球磁场建模中。Puruker[9]采用球谐分析法建立了截断水平为178阶的全球磁场模型,利用通过等效场源法处理后的(同一高度)磁场数据拟合模型系数,所得模型空间分辨率大约为60km,虽仍无法满足对月球磁场精细研究的要求,但已经是对磁场数据进行了人为补充的结果。此球谐模型可用于研究月球与太阳风的相互作用。Purucker和Nicholas[10]综合利用球谐函数模型和协方差分析法对Reiner Gamma地区进行建模。首先,建立球谐函数模型拟合观测场。然后,根据外部磁场与球谐系数的相关性舍去模型中n|3的级数项,因为相关性随模型阶数增大而逐渐降低,在n|4时,相关系数在0.1以下。不难发现,这种简单的舍去会导致外部磁场的过度去除,产生压缩效应,如图2所示。对于局部磁场,球谐函数的正交性将不存在,会产生相当大的边界误差[18]。

图2 Reiner Gamma地区30km高度上的径向磁场分布图[10]

1.2.6 撞击模拟法

通过模拟撞击点的去磁作用和撞击盆地对峙区的磁场增强作用建模[1]。模型场由初始强度为1nT的均匀表面磁场经已确认的撞击形成盆地事件按照顺序依次作用,不断经历着去磁与磁化过程而形成的。模型场与观测场在中纬度地区的分布如图3所示,二者总体上较为一致,直接证实了撞击剩余磁化起源理论的合理性[2],但也存在局部差异,有以下3方面原因:①模型场构造中忽略了难以形成较大盆地(直径大于500km)的小型撞击,对小尺度上磁场分布有影响;②模型中忽略了撞击产生的溅出磁性物质对表面磁场的贡献;③初始均匀弱磁场假设忽略了非对峙区磁场的演化。模型场与观测场在中纬度地区的分布如图3所示,能描述该区域月球磁场的主要分布特征,为磁场建模提供了一个新的思路,具有深入研究的价值。

图3 中纬度地区的月球磁场分布图[1]

1.3 存在的主要问题

综上所述,现阶段月球磁场建模以经验或半经验为主,着重于拟合观测数据,主要存在以下问题:

1)建模中所采用的磁场数据来源较为单一,主要来自美国的月球勘探者号和日本的月神号卫星。

2)观测数据中含有外部磁场,而现有的磁场测量仅限于轨道,月表观测数据的缺失使得内、外磁场分离困难,采用低次多项式法和Akaike’s贝叶斯信息准则去除外部磁场的处理都有一定的局限性,且无法处理太阳活动期间外部磁场受到强烈扰动的观测数据。

3)观测数据不足以覆盖全球,测量区域受飞行轨道的限制,使得部分地区数据缺失,且数据空间分辨率不高(5km),客观上造成了区域和全球磁场建模的困难。

4)单纯的数学建模方法如二维移动平均法和经验幂律法不考虑磁场随高度变化的物理特性,只能给出标量磁场。物理建模方法能得到具有物理意义的矢量磁场。等效场源法和边值法通过反演求解,但反演问题没有唯一解,且计算量大,不能描述盆地对峙区的强磁异常。球谐分析法要求数据覆盖全球,不适用于区域磁场建模。模拟撞击法不能解释非对峙区磁异常和中心磁异常。

5)建模中大多忽略磁场东向分量的贡献,造成部分磁场信息的缺失。

1.4 发展趋势

月球磁场模型的发展仍以经验模型为主,观测数据的处理仍是关键。针对目前存在的问题,提高月球磁场模型精度,可以从以下几个方面考虑:

1)改善磁场测量数据质量。采用多颗卫星的观测数据,在典型磁异常区,除卫星在轨测量外,还需增加月表辅助测量。

2)提高观测数据处理技术。考虑外部磁场起源的物理特性,结合现有的行星际磁场和地磁场模型拟合外部磁场。

3)外部磁场与月球磁场建模同步处理,可以避免外部磁场的过度去除问题。

4)提高模型的物理内涵,减少对观测数据的依赖。可以通过等效场源法拟合补充月球磁场数据。

5)结合月球磁场的分布特征,联合多种物理模型建模。热剩余磁化和撞击剩余磁化都可能是月球磁场的来源。因此,等效场源法与撞击模拟法联合建模,既能描述中心磁异常,也能描述盆地对峙区磁异常。

6)加强外部场与磁场东向分量耦合机制的研究。

2 结束语

月球磁场起源的物理本质尚不清楚,因此未来月球磁场模型的发展仍然以经验模型为主,强烈依赖于观测数据。建立精细的月球磁场模型,首先,需要改善磁场测量数据质量,在典型磁异常区除卫星在轨测量外,还需增加月表辅助测量;其次,需考虑磁场东向分量的贡献,现有的月球磁场模型中大多忽略此项,造成部分场源信息的缺失;最后,提高数据处理和物理模型精度,多种方法相结合建模不失为一个发展方向。

[1]MITCHELL D L,HALEKAS J S,LIN R P,et al.Global mapping of lunar crustal magnetic fields by Lunar Prospector[J].Icarus,2008,194(2):401-409.

[2]HOOD L L.Central magnetic anomalies of Nectarianaged lunar impact basins:Probable evidence for an early core dynamo[J].Icarus,2011,211(2):1109-1128.

[3]WANG X Q,CUI J,WANG X D,et al.The Solar Wind interactions with Lunar Magnetic Anomalies:A case study of the Chang’E-2plasma data near the Serenitatisantipode[J].Advances in Space Research,2012,50(12):1600-1606.

[4]李泳泉,刘建忠,欧阳自远,等.月球磁场与月球演化[J].地球物理学进展,2005,20(4):1003-1008.

[5]ROCHETTE P,GATTACCECA J,IVANOV A V,et al.Magnetic properties of lunar materials:Meteorites,Luna and Apollo returned samples[J].Earth and Planetary Science Letters,2010,292(3):383-391.

[6]牛遂旺,韩少红,丁硕.地磁场日变数据处理方法的探讨[J].测绘工程,2006,15(5):31-33.

[7]RICHMOND N C,HOOD L L.A preliminary global map of the vector lunar crustal magnetic field based on Lunar Prospector magnetometer data[J].Journal of Geophysical Research,2008,113(E2):E02010,doi:10.1029/2007JE002933.

[8]PURUCKER M E,SABAKA T J,Halekas J,et al.The lunar magnetic field environment:Interpretation of new maps of the internal and external fields[C]//37th Annual Lunar and Planetary Science Conference.2006,37:1933.

[9]PURUCKER M E.A global model of the internal magnetic field of the Moon based on Lunar Prospector magnetometer observations[J].Icarus,2008,197(1):19-23.

[10]PURUCKER M E,NICHOLAS J B.Global spherical harmonic models of the internal magnetic field of the Moon based on sequential and coestimation approaches[J].Journal of Geophysical Research,2010,115(E14):12007-12016.

[11]TSUNAKAWA H,SHIBUYA H,TAKAHASHI F,et al.Lunar magnetic field observation and initial global mapping of lunar magnetic anomalies by MAP-LMAG onboard SELENE(Kaguya)[J].Space science reviews,2010,154(1-4):219-251.

[12]HOOD L L,RUSSELL C T,COLEMAN P J.Contour maps of lunar remanent magnetic fields[J].Journal of Geophysical Research:Solid Earth(1978–2012),1981,86(B2):1055-1069.

[13]HOOD L L,ZAKHARIAN A,HALEKAS J,et al.Initial mapping and interpretation of lunar crustal magnetic anomalies using Lunar Prospector magnetometer data[J].Journal of Geophysical Research,2001,106(E11):27825-27839.

[14]KURATA M,TSUNAKAWA H,SAITO Y,et al.Mini-magnetosphere over the Reiner Gamma magnetic anomaly region on the Moon[J].Geophysical Research Letters,2005,32(24):L24205,doi:10.1029/2005GL024097.

[15]AKAIKE H.Likelihood and the Bayes procedure[J].Bayesian Statistics,1980:141-166.

[16]TOYOSHIMA M,SHIBUYA H,MATSUSHIMA M,et al.Equivalent source mapping of the lunar crustal magnetic field using ABIC[J].Earth Planets Space,2008,60(4):365-373.

[17]RICHMOND N C,HOOD L L,MITCHELL D L,et al.Correlations between magnetic anomalies and surface geology antipodal to lunar impact basins[J].Journal of Geophysical Research,2005,110(E5):E05011,doi:10.1029/2005JE002405.

[18]徐文耀.地磁学[M].北京:地震出版社,2003.

猜你喜欢
边值场源月球
基于深度展开ISTA网络的混合源定位方法
到月球上“飙车”
一类带有Slit-strips型积分边值条件的分数阶微分方程及微分包含解的存在性
陪我去月球
月球上的另一个我
基于矩阵差分的远场和近场混合源定位方法
振荡Robin混合边值齐次化问题
带有积分边值条件的两项分数阶微分方程正解的存在性
Neumann边值齐次化问题:W1,p强收敛估计
一种识别位场场源的混合小波方法