石焕南,张静
(1.北京联合大学师范学院电气信息系,北京 100011;2.北京联合大学基础部,北京 100101)
一类条件不等式的控制证明与应用
石焕南1,张静2
(1.北京联合大学师范学院电气信息系,北京 100011;2.北京联合大学基础部,北京 100101)
通过判断相关函数的Schur凸性、Schur几何凸性和Schur调和凸性,证明并推广了一类条件不等式,并据此建立了某些单形不等式.
Schur凸性;Schur调和凸性;Schur几何凸性;条件不等式;单形
DO I:10.3969/j.issn.1008-5513.2013.05.001
证明由定理3的(13)式可得证.
致谢作者感谢张晗方教授给予本文的热情帮助.
[1]M arshall A W,Olkin I,A rnold B C.Inequalities:Theory of Ma jorization and Its App lication[M].2nd ed. New York:Sp ringer Press,2011.
[2]王伯英.控制不等式基础[M].北京:北京师范大学出版社,1990.
[3]张小明.几何凸函数[M].合肥:安徽大学出版社,2004.
[4]Chu Yum ing,L¨u Yupei.The Schur harmonic convexity of the Ham y symmetric function and its app lications[J].Journal of Inequalities and Applications,2009,13:29-38.
[5]石焕南.受控理论与解析不等式[M].哈尔滨:哈尔滨工业大学出版社,2012.
[6]Chu Yum ing,Sun T ianchuan.The Schur harm onic convexity for a class of symm etric functions[J].Acta M athematica Scientia,2010,30B(5):1501-1506.
[7]Chu Y M,Wang G D,Zhang X H.The Schur mu ltiplicative and harmonic convexities of the comp lete symmetric function[J].M athematische Nachrichten,2011,284(5/6):653-663.
[8]Guan Kaizhong,Guan Ruke.Som e properties of a generalized Ham y symm etric function and its app lications[J].Journal of M athematical Analysis and App lications,2011,376(2):494-505.
[9]ShiHuannan.Two Schur-convex functions related to Hadamard-type integral inequalities[J].Pub licationes M athem aticae Debrecen,2011,78(2):393-403.
[11]Xia W eifeng,Chu Yum ing.The Schur convexity of G inimean values in the sense of harmonic mean[J]. A cta M athem atica Scien tia,2011,31B(3):1103-1112.
[12]Yang Zhenhang.Schur harmonic convexity of Ginimeans[J].International Mathematical Forum,2011,6 (16):747-762.
[13]Chu Yum ing,Xia Weifeng.Necessary and su f cient conditions for the Schur harmonic convexity of the Generalized M uirhead M ean[J].Proceed ings of A.Razm adze M athem atical Institu te,2010,152:19-27.
[14]Wu Y ing,QiFeng.Schur-harmonic convexity for dif erences of somemeans[J].Analysis,2012,32(4):263-270.
[15]Chu Yum ing,X iaWeifeng,Zhang Xiaohui.The Schur concavity,Schurmu ltip licative and harmonic convexities of the second dual form of the Ham y symm etric function w ith app lications[J].Jou rnal of M u ltivariate Analysis,2012,105(1):412-421.
[16]X iaWeifeng,Chu Yum ing,Wang Gendi.Necessary and suf cient conditions for the Schur harmonic convexity or concavity of theextendedmean values[J].Revista De La Uni`on M atem´atica Argentina,2010,51(2):121-132.
[17]夏卫锋,褚玉明.一类对称函数的Schur凸性与应用[J].数学进展,2012,41(4):436-446.
[18]邵志华.一类对称函数的Schur-几何凸性Schur-调和凸性[J].数学的实践与认识,2012,42(16):199-206.
[19]匡继昌.常用不等式[M].4版.济南:山东科学技术出版社,2010.
[20]杨学枝.数学奥林匹克不等式研究[M].哈尔滨:哈尔滨工业大学出版社,2009.
[21]M itrinovi´c D S,Peˇcri´c J E,Volenec V.Recent Advances in Geometric Inequalities[M].Dord recht:K luwer Academ ic Pub lishers,1989.
[22]石焕南.一个有理分式不等式的加细[J].纯粹数学与应用数学,2006,22(2):256-262.
[23]张晗方.几何不等式导引[M].北京:中国科学文化出版社,2003.
M a jorized p roof and app lications for a class of cond itional inequality
Shi Huannan1,Zhang Jing2
(1.Departm ent of E lectronic Inform ation,Teacher′s College of Beijing Union University,
Beijing 100011,China;
2.Basic Courses Department,Beijing Union University,Beijing 100101,China)
To determ ine Schur convexity,Schur-geometric and harmonic convexities of the related function,a class of conditional inequality is p roved.As an application,several sim plex inequalities are obtained.
Schu r-convexity,Schu r harm onic convexity,Schu r geom etric convexity,cond itional inequality, sim p lex
O178
A
1008-5513(2013)05-0441-09
2013-05-22.
北京市属高等学校人才强教计划资助项目(PHR 201108407).
石焕南(1948-),教授,研究方向:解析不等式.
张静(1975-),副教授,研究方向:解析不等式、优化理论、数学模型.
2010 MSC:26D 15