房明磊,蒋利华
(安徽理工大学 理学院,安徽 淮南 232001)
考虑如下非线性方程组
其中F(x):Rn→Rm为连续可微的。在本文中,我们总是假设(1)的解集是非空的,记为X*,在所有情况下,‖·‖表示为二范数。L-M方法是由Levenberg(1944)[1]和Marquardt(1963)[2]提出的,所以称为Levenberg-Marquardt方法(简称为L-M方法)。L-M步是通过求解下述优化模型的解来获取的
λk=‖Fk‖+‖JT k Fk‖ λk=‖JTk Fk‖ λk=‖Fk‖ λk=‖Fk‖2images/BZ_331_641_2880_644_2880.pngfunction n ximages/BZ_331_827_2892_830_2895.png0 Nit Nit Nit Nit Powellsingular 4 110 1883 1563 1233 14-
[1]Levenberg K.A method for the solution of certain nonlinear problems in least squares[J].Quart.Appl.Math.,1944(2):164-166.
[2]Marquardt D W.An algorithm for least-squares estimation of nonlinear inequalities[J].SIAM J.Appl.Math.,1963(11):431-441.
[3]Dennis J E and Schnabel R B.Numerical Methods for Unconstrained Optimization and Nonlinear equations[M].Prentice-Hall,Englewood cliffs,New Jersey,1983.
[4]Yamashita N and Fukushima M.On the rate of convergence of the Levenberg-Marquardt method[J].Computing,2001(15):239-249.
[5]Fan Jinyan and Yuan Y.On the convergence of a new Levenberg-Marquardt mathod,Report,2001-2005,AMSS,Chinese Academy of Sciences.
[6]杨柳,陈艳萍.一种新的Levenberg-Marquardt算法的收敛性[J].计算数学,2005,27(1):55-62.
[7]Mor J J,Garbow B S and Hillstrom K H.Testing unconstrained optimization software[J].ACM,Trans,Math.Software,1981(7):17-41.