立体几何问题平面化初探

2013-04-29 02:02:24姚永
中学课程辅导·教学研究 2013年5期
关键词:平面化转化能力

姚永

摘要:把空间几何问题平面化,由简单问题深入,研究综合问题(实际问题)所存在的一般规律,从

而培养学生的转化问题和归纳的思维能力。

关键词:平面化;转化;能力

高中数学中的立体几何问题,常常需要转化为平面几何问题,有时可以起到化繁为简的

作用。下面,笔者就一个简单问题,谈谈自己的思考。

问题1:如图,在直三棱柱中,,,点D是AB的中点。

(1)求证:CD面ABB1A1;(2)求证AC1面CDB1;

(3)线段AB上是否存在点M,使得面CDB1。

分析:(1)一般地,线面垂直的证明问题都可转化成线线垂直或面面垂直,本题有题设易知,故只需证明即可。

(2)线面平行的问题常常转化为线线平行或面面平行,本

题思路一:考虑到点D为AB的中点,可以考虑连接,交于点F,连DF,只需证明。思路二:可以取的中点,连,问题转化为证明面面即可。

(3)本题属于探索性问题,可以假设存在点M,

由(1)知CD面ABB1A1,故只需AM DB1,从而问题

转化为平面几何问题,简化了问题。

解析:(1)、(2)证明略.

(3)由分析可知,问题转化为在矩形的边AB

上找一点M,使得成立,

设AC=a,则AB=,,要使的,由平几知识可知,故点M与点B重合。

总结1:线面垂直的探索性问题通过转化,成为一道平面几何问题,从而把问题简化。

问题2:在棱长为的正方体中,

求面和面的距离。

分析:考虑到面和面的位置关系为平行,且

同时和直线垂直,从而可以把问题转化为:求夹在两

平行平面间的线段长度问题。

解析:连结,设线段与面和面的交点分别为点E、F,由于E、F都在平面中,如右

图,由平几知识可知,而,所以

总结2:立体几何问题平面化,从而把平行平面所夹线段长度问题转化为点与点之间的距离,突出了问题的本质,简化了解题过程。

问题3:将一个半径为5的水晶球放在如图所示的工艺架上,支架是由三根金属杆PA、PB、PC组成,它们两两成角。则水晶球的球心到支架P的距离是 .

分析:设球心为O,球与PA、PB、PC的交点分别为

A、B、C,则,由

于PA、PB、PC两两成角,所以,PA=PB=PC=AB

=AC=BC,从而,三棱锥P—ABC为正四面体,故点

P在面ABC上的射影为正三角形ABC的中心,又OA=OB=OC,所以球心O在面ABC上的射影也是正三角形ABC的中心,设三角形ABC的中心为点Q,则三点P、Q、O共线。这样就可以把一个实际问题抽象为立体几何问题,即

在空间组合体中,为正三棱锥,为正四面体,且

,如图1,已知OA=5,求OP

考虑到,且点Q为三角形ABC的中心,问题可转化为:

平面中,三角形OPA为直角三角形,角A为直角,AQ为PO

边上的高,其中,AO=5,求OP的长。

通过这样的转化,使得很复杂的实际空间几何问题转化为简

单的数学平面几何问题,使得问题的难度大大的降低,简解如下:

解析:设AP=a,OP=x,由于Q为三角形ABC的中心,所以

,再由等面积法可知

所以,球心到支架点P的距离为

总结3:一道复杂的立体几何问题,通过两次等价转化,变成一道简单的平面几何问题,这就是转化的魅力。

空间几何问题转化为平面几何问题是解决立体几何问题的常用方法,有利于激发学生对数学的学习兴趣,培养学生的空间想象能力、运算能力和问题的转化能力。如:问题3,经过这样的分析和转化,学生可以很快地掌握这一类问题的解法。当然,还可以把这个问题引申为更一般的情形:

将一个半径为cm的水晶球放在工艺架上,支架是由三根金属杆PA、PB、PC组成,它们两两成的角为,则水晶球的球心到支架P的距离是 .

(答案为)

猜你喜欢
平面化转化能力
从立体到平面,化复杂为简单
消防安全四个能力
中国当代油画平面化表现形式的美学思想及意义
艺术家(2019年2期)2019-01-12 10:01:06
大兴学习之风 提升履职能力
人大建设(2018年6期)2018-08-16 07:23:10
你的换位思考能力如何
当代抗日影片中的日军形象
浅谈学困生的转化
科技视界(2016年18期)2016-11-03 23:26:59
国有企业科技成果转化及产业化中存在的问题分析
浅谈演员“第一自我”与“第二自我”的转化
戏剧之家(2016年19期)2016-10-31 18:33:48
后进生转化和提升的实践与思考
成才之路(2016年26期)2016-10-08 11:59:08