尼玛次仁
在初中教学中证明图形的相似度是我们教学中的重点,也是在以后的教学中学习“三角形”和“圆”的基础,对于相似三角形的判断必须要熟练而灵活,本文笔者简单的阐述了
相似三角形判定,供参考。
一、判定两个三角形相似的基本定理.
1、如果两个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
2、如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
3、如果两个三角形的三组对应边的比相等,那么这两个三角形相似。 .
二、相似三角形最基本的图形需熟练掌握
1、A型,直线D E截两边可得 4个三角形与原AA B C相似.
2 、X型,直线D E截两边延长线可得2个三角形与原AA BC相似.
3、公共角
因此,两个相似三角形经过平移、 旋转、 翻折后依然相似.
4、两个全等的三角形一定(肯定)相似。
5、两个等腰直角三角形一定(肯定)相似(两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似)
6、两个等边三角形一定(肯定)相似。
7、直角三角形相似判定定理
(一)斜边与一条直角边对应成比例的两直角三角形相似。
(二)直角三角形被斜边上 的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。
三、三角形判定的例题分析
例在一次数学活动课上,老师带领学生去测教学楼的高度,在阳光下测得身高1.6 5 m的甲同学的影长 BA为 1.1 m, 与此同时, 测得教学楼的影长 D F为 1 2 .1 m, 如图1所示。请你根据已测得的数据,求教学楼 DE的高度。(精确到0.1m)
图1 图2
分析:这里我们把太阳光看作为平行光线, 即如图2中的AC与EF互相平行, 于是本问题可以转化在?ABC和?FDE中,利用 AC∥EF证得?ABC∽?FDE.由相似三角形对应边成比例可以求出DE的长。
解: 如图2
∵AC∥EF
∴∠CAB=∠EFD
又∵CB⊥AB,ED⊥FD
∴∠CBA=∠EDF=90°
∴?ABC~?FDE
∴BC/DE=BA/DF
即1.65/DE=1.1/12.1
∴DE≈18.2(m)
因此,教学楼DE的高度约为18.2m.
点评:本题目借助相似三角形的性质解决实际问题,关键是寻找二角形相似的条件,利用太阳光是平行光以及人、楼与地难亩画出相应的图形构造相似三角形,然后通过相似三角形对应边成比例得出关系式求解。
综上所述,判定三角形相似的方法较多,同学们要灵活选择,明确判断的思路,关键是能分析题 目提供的已知条件,充分去寻找要判断相似三角形所缺的条件,灵活而准确地组成三角形相似的条件。