设计方案生成教学

2013-04-29 00:44:03许滨
中学教学参考·理科版 2013年9期
关键词:勾股定理直角三角形正方形

许滨

在初中数学中,勾股定理是几何学习过程中非常重要的一个定理,它不仅具有深刻的历史底蕴,而且与直角三角形有关问题有着密切的联系.所以,在讲授该定理时,教师有必要严谨地设计方案,让理论依据和教学思路都能清晰地呈现在课堂当中.只有这样,学生才可以更好地学好知识,领悟勾股定理,实现学习目的.本文以勾股定理的实际教学作为案例,将方案设计规划为如下五步.

一、定理引入

课堂教学开展之初,应利用一些生动有趣的故事引入,让学生对所学知识产生兴趣.

在教学勾股定理时,我用《九章算术》中的一题引入:如图1,有个一丈见方的水池,在这个池中生长着一株植物,植物形似芦苇,恰好伸出水面一尺长,假如把这株植物弯向岸边,直到其与地面相连时,可否得出这一池水的深度,以及这株植物的长度?

图1在方案设计时融入故事和趣味问题,主要的意图是通过这些妙趣横生的情境来激发学生的想象力,让他们对学习勾股定理产生兴趣,从而调动起他们的探究热情.

图2二、定理探索

定理的探索是一个发现的过程,主要分为以下两步.

1.直角三角形的三边数量关系的猜想

结合图2,若图中小方格的单位面积为1.问题(1):如何求出三个正方形的面积?问题(2):三个正方形的面积之间有什么等量关系?问题(3):你能否得出直角三角形三边的数量关系?

2.猜想验证

首先作出八个全等的直角三角形,它们的两个直角边和斜边分别设定为a、b、c,再作三个正方形,它们的边长分别为a、b、c.然后按照图3所示,将它们拼成两个大的正方形.我们从两个大正方形中可以发现,它们的边长均为a+b,因此可以断定它们的面积等同.即.

图3通过上述验证探索我们可以得知,直角三角形的两条直角边的平方和等于斜边的平方(即勾股定理).

三、定理应用

在验证完上述定理之后,还需要针对学生掌握的情况进行解题尝试,让学生可以进一步应用定理. 以上述《九章算术》的习题为例,让学生尝试求出池水的深度以及这株植物的长度.

因为学生此时已经大致了解了勾股定理,因此在理解题意的基础上,可以整理出AB2=AC2+BC2,再将有关代数式代入等式中,通过解方程可以得出水深12尺,这株植物的长度为13尺.

四、定理证明

图4 当学生完成了對勾股定理的猜测、验证和应用后,最后还要对勾股定理进行证明.对此,我们将学生分为几个小组,让学生组内合作进行定理的证明.当然,勾股定理的证明方法有很多,所以针对不同的小组,让他们采用不同的方法加以证明.就拿拼图法来说,除了像图3那种方法外,也可以用图4来证明.

这一部分的操作意图是为了让学生之间的互动交流得以加强,使他们对勾股定理的原理和认知能够得到全面的巩固.

五、习题巩固

针对学生对勾股定理的掌握情况,教师安排一些有针对性的习题进行一系列的巩固练习,这在强化学生应用能力的同时,也加深了他们对该定理的认知,从而让知识变得真实易懂,融入自身.

总之,将这种模式融入勾股定理的教学当中,让勾股定理的教学过程逻辑分明、条理清晰,使学生深刻理解这一定理的内涵,这不仅是教学的最终目标,也是加深学生对这一定理认知的重要途径.

(责任编辑黄春香)ZHONGXUEJIAOXUECANKAO

猜你喜欢
勾股定理直角三角形正方形
含30°角直角三角形在生活中的应用
勾股定理紧握折叠的手
用勾股定理解一类题
应用勾股定理的几个层次
剪正方形
《勾股定理》拓展精练
剪拼正方形
拼正方形
拼正方形
5.2 图形的相似与解直角三角形