王明明
和初中数学相比,高中数学内容多,抽象性、理论性强,因此不少同学进入高中以后很不适应,特别是高一年级进校后遇到的是理论性很强的函数,再加上立体几何,空间概念、空间想像能力又不可能一下子建立起来,这使得很多初中学得还不错的同学不能很快适应而感动困难。当然造成这种现象的原因是多方面的,本文仅就从学生的学习状态方面浅谈如下:
1.被动学习.许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权.表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”.没有真正理解所学内容。
2.学不得法.老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法.而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背.也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微.
3.不重视基础.一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海.到正规作业或考试中不是演算出错就是中途“卡壳”.
4.进一步学习条件不具备.高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃.这就要求必须掌握基础知识与技能为进一步学习作好准备.高中数学很多地方难度大、方法新、分析能力要求高.如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等.客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的.
高中学生仅仅想学是不够的,还必须“会学”,要讲究科学的学习方法,提高学习效率,才能变被动为主动.针对学生学习中出现的上述情况,教师应当采取以加强学法指导为主,化解分化点为辅的对策:
1.加强学法指导,培养良好学习习惯。良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面.
独立作业是学生通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程.这一过程是对学生意志毅力的考验,通过运用使学生对所学知识由“会”到“熟”.
解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程.解决疑难一定要有锲而不舍的精神,做错的作业再做一遍.对错误的地方没弄清楚要反复思考,实在解决不了的要请教老师和同学,并要经常把易错的地方拿出来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”.
系统小结是学生通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节.小结要在系统复习的基础上以教材为依据,参照笔记与有关资料,通过分析、综合、类比、概括,揭示知识间的内在联系.以达到对所学知识融会贯通的目的.经常进行多层次小结,能对所学知识由“活”到“悟”.
课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等.课外学习是课内学习的补充和继续,它不仅能丰富学生的文化科学知识,加深和巩固课内所学的知识,而且能满足和发展他们的兴趣爱好,培养独立学习和工作能力,激发求知欲与学习热情.
2.循序渐进,防止急躁
由于学生年龄较小,阅历有限,为数不少的高中学生容易急躁,有的同学贪多求快,囫囵吞枣,有的同学想靠几天“冲刺”一蹴而就,有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振.针对这些情况,教师要让学生懂得学习是一个长期的巩固旧知识、发现新知识的积累过程,决非一朝一夕可以完成,为什么高中要上三年而不是三天!许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度.
3.研究学科特点,寻找最佳学习方法
数学学科担负着培养学生运算能力、逻辑思维能力、空间想象能力,以及运用所学知识分析问题、解决问题的能力的重任.它的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高.学习数学一定要讲究“活”,只看书不做题不行,埋头做题不总结积累不行,对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法.华罗庚先生倡导的“由薄到厚”和“由厚到薄”的学习过程就是这个道理.方法因人而异,但学习的四个环节(预习、上课、整理、作业)和一个步骤(复习总结)是少不了的.
4.加强辅导,化解分化点
如前所述高中数学中易分化的地方多,这些地方一般都有方法新、难度大、灵活性强等特点.对易分化的地方教师应当采取多次反复,加强辅导,开辟专题讲座,指导阅读参考书等方法,将出现的错误提出来让学生议一议,充分展示他们的思维过程,通过变式练习,提高他们的鉴赏能力,以达到灵活掌握知识、运用知识的目的。
最后,数学我觉得是讲究思维的,就是学的是思路解题的思路,看到这样的题就想到他的解法,而且脑海中有了完整的步骤了。
但数学不是单纯靠做题做出来的,方法永远比单纯做题更重要。如果仅仅记住了一道题,而不仔细思考它的每一步是怎样想出来的话,做再多的题也没用,反而会浪费很多的时间。好的做法是:首先上课认真听,并不要求把老师讲的每道题都记下来(这样复习时要花很多时间),只要是自己已经懂、解题思路也与老师一样的题目就大可不必再记。关键要记那些自己不懂或自己已懂但老师的方法更简便的题目。
接下来是课后。数学不像别的科目,一天不练就会生疏一些。当天的内容一定要当天复习,否则时间一长就容易忘记,要想再赶上就会比较吃力。复习主要靠做练习来巩固,也不必漫无边际地做,
主要是老师布置的练习一定要完成。如果学有余力的话,再去找课外题来做,否则就不必强求。做不出的题第二天老师讲时一定要做好笔记,理清思路,关键是看自己平时做错或者不会做的题目(平时就应注意把这类题用红笔标出),记住解题方法。
如果要做题的话,就做最近各地的模拟试题,那些题一般针对性更强些。总之还是三个字——不要断。坚持每天都花一点时间在数学上,肯定会有提高。