邱俊强
【摘 要】近几年,农村地区经济发展速度越来越快,为了迅速占领市场,加强农村地区3G无线网络的规划建设就成为了运营商首要关心的问题。本文介绍了农村地区3G无线网络规划的情况,主要围绕无线传播模型的选择、覆盖质量、特殊场景覆盖问题及传输网络等方面探讨了农村地区3G无线网络的规划建设。并阐述了设备选型的问题。
【关键词】3G无线网络;规划建设;传输网络;设备选型
随着我国通信行业的蓬勃发展,国内移动通信市场不断扩大,移动用户数量日益增加。近几年,农村的经济发展水平和农民生活水平的不断提高,基于运营商竞争的需要和移动数据业务的发展前景,3G无线网络在我国农村地区的部署已进入了实质性阶段。但农村地区由于基础设施落后,无线网络建设难度大,同时网络规划的质量会直接影响到移动通信系统的质量。因此,运营商若想在满足信号覆盖、系统容量和网络质量的基础上使成本最低,并且获得较好的经济效益,就必须做好3G无线网络规划建设的工作。本文通过探讨农村地区3G无线网络规划建设的相关情况,希望对3G无线网络的部署有所帮助。
1.农村地区3G无线网络规划分析
1.1 统一规划,分步实施
某地3G网络建设初期的重点在于城市和经济发达的乡镇,但是随着交通等基础设施的持续改善,农村地区的通信状况必然要求持续跟进和改善,因此农村地区的3G无线网络建设应同步纳入规划,统一规划,分布实施。
1.2 小容量,大覆盖
农村地区话务量非常低,因此可以根据市场的发展目标及竞争对手的网络情况来制定相应的覆盖目标。
建议的地区建网思路主要是:小容量,大覆盖,采用多种覆盖方式灵活组网,以最小的成本实现最大的覆盖。
2.农村地区3G无线网络建设规划思考
2.1 无线传播模型的选择
在3G无线网络规划中,需要根据不同场景下的无线传播方式和特性,应用不同的传播模型进行覆盖预测或者场强预测,因此准确选择与确定无线传播模型是做好3G无线网络建设的基础性工作。
下面分别介绍传统的Okumura-Hata和Walfish-Ikegami模型,以及爱立信特有的9999和Urban-3D模型。
2.1.1 Okumura-Hata(下称OH)模型
OH模型是一种适用于对宏蜂窝基站的覆盖范围进行预测的模型,目前已被广泛应用于无线系统的信号传播预测中。
2.1.2 Walfish-Ikegami(下称WI)模型
WI模型在很多方面具有与OH模型互补的特点,如其适用范围为0.2~5.0km,对普通的城市区域,特别是建筑物类型单一、分布均匀的环境有较好的预测效果。但由于其适用范围比较窄,传统上WI模型的使用较OH模型要少些。
2.1.3 爱立信9999模型
9999模型的适用条件为:频率区间150~2500MHz,预测半径0.2~100km,天线高度20~200m。
在实际工作中,9999模型一般用于人工建筑物较少或稀疏、主要地形为自然环境的场合,如农村、山地、海岸线等城镇以外的站间距较大的区域。
2.1.4 爱立信Urban-3D模型
与上述模型相比,爱立信Urban-3D模型的原理要更加复杂,考虑的情况也更为详尽,图1是它的算法示意图。
对某一点来说,Urban-3D模型会对从发射机沿2个方向传来的信号进行综合考虑,取衰减量较小的值作为预测结果。
2.2 覆盖容量和质量的考虑
在无线网络规划中,影响成本的最主要因素是基站数量,收益则与网络的竞争力直接相关。网络规划的前提是需要运营商制定具有前瞻性的规划目标,包括覆盖目标、容量目标和质量目标,这些目标要求就决定了网络的基站数量和网络的竞争力。
在农村地区无线网络规划过程中,必须针对不同类型的区域做到有不同程度的侧重覆盖,并且注意重要的点(如著名旅游景点、重要乡镇等)、面覆盖目标的结合以及重要的线、面覆盖目标的结合,最终达到完善的覆盖效果。
农村地区的经济大都不够发达,人口也比较稀少,除少量较大的城镇外,容量上一般不会存在问题,所以可不作为考虑的重点。具体的规划可分为以下3个阶段。
2.2.1 初期
根据人口密集程度以及当地的实际情况,较大规模的城镇要给予重点覆盖;较小规模的城镇、村庄可以根据需要做到适当的面覆盖。
2.2.2 中期
提高初期连续覆盖区域的覆盖质量。
对经济比较发达的乡镇进行连续覆盖建设。
在高速公路沿线连续覆盖的基础上,实现周边一定距离范围内乡镇的面覆盖,建设国道、铁道和沿海的面覆盖。
对省一级风景区进行覆盖。
不要求全省连续覆盖。
2.2.3 后期
在提高已有覆盖质量的同时,进行面覆盖的补缺、补漏工作。
完善点、线、面覆盖的结合,对除高速公路和国道以外的交通干线也要给予适当的覆盖。
对局部话务量特别高和干扰严重的区域,考虑添加新的载频。
2.3 特殊场景的覆盖解决方案
2.3.1 公路、铁路的解决方案
国道干线、高速公路及铁路干线沿线的覆盖是运营商解决郊区覆盖时需重点关注的区域。
这些区域共同的特点是话务量较低,基本按线分布;一般考虑以带状的沿线覆盖为主,适当兼顾周边乡镇的覆盖。在方案上一般采用容易安装、成本低、维护简单且布网快速的产品,同时结合高增益天线进行定点覆盖;配置上多以两扇区为主;对于曲折的线路,射频远端模块(RRU)可适当置远,以实现定点覆盖。
2.3.2 盘山公路的解决方案
这些情况下,单靠调整天线的方向下倾角已经无法平衡覆盖和干扰之间的问题,最好的解决方案就是把这些干扰严重的小区用不同的载频来做覆盖。即在上下层之间有较严重干扰的小区采用分层结构,引入第二个载频,从而避免相互之间的同频干扰。
2.3.3 隧道的解决方案
a)隧道按通过车辆的性质可以分为公路隧道、铁路隧道和地铁隧道;按长度可以分为短隧道、中等隧道、长隧道和多段隧道等。
短隧道是指可以用一个天线点覆盖的隧道,长度小于1km;中等隧道是指隧道两端至少用2个天线点覆盖的隧道,长度大约1~2km;长隧道是指要用多个天线来覆盖的隧道,长度在2km以上。
b)可以采用宏蜂窝、微蜂窝、RRU或直放站等作为覆盖的信号源。如果使用RRU则可实现光纤拉远,且可有多个RRU远端,效果比使用直放站要好得多。
公路隧道和铁路隧道由于话务量小,一般用微蜂窝或直放站作信号源;地铁覆盖由于话务量较大,采用宏蜂窝作信号源。另外信号源的选择也受机房、传输、供电、设备和天线安装等条件的限制。
c)根据公路隧道和铁路隧道的覆盖情况,可以采用以下几种类型的天线系统: 普通天线、分布式天线系统、泄漏电缆。
2.4 传输网络的考虑
地区传输网络的建设也是一个非常重要的问题。根据地理条件的限制和覆盖话务的不同,其传输网的设计通常有以下两种考虑:
a)地区无线网络覆盖面积相对较小,话务量相对较低,无线网络控制器(RNC)连接的基站数量也较少,所以传输网络结构可倾向于简单。利用ATM交换机(RXI)或有汇聚功能的基站将若干基站的话务进行汇总,直接送至所连接的RNC,见图2。
图2 地区传输网络结构(一)
b)当缺乏传输网时,为了能够快速建网,也可以选用点对点或点对多点的无线传输方案。
点对点方案通常部署在基站较少的地区。通过点对多点进行的ATM汇聚通常更适合于基站数量较大而且频谱效率必须保持较高的大型汇聚节点。
3.设备选型方面的考虑
农村地区一般都是人口密度小、地域广阔的偏远地区,这些地区大多经济不发达,因此在建网时也要考虑投资回报问题。
结合现有移动网的经验,在网络建设初期多以保证公路和铁路沿线的重点覆盖为设计目标,在业务上以提供话音服务为主。
结合农村地区的实际,在设备的选型上应采用低成本、小配置的基站来解决投资和覆盖的矛盾。地区无线网络规划以宏蜂窝为主,基本不会考虑专门的室内覆盖解决方案,所以在产品选型时主要考虑以下几个方面:
a)基站功率。较大的发射功率可以保证较大的覆盖范围,通常可以选用30W的基站,在特殊情况下也可以选用60W的基站。
b)射频拉远。当覆盖点过于分散时,可以采用射频拉远的覆盖方式。
c)塔放和电调天线。由于小区的覆盖范围很大,由地形造成的信号阻挡以及采用大功率基站,往往会造成上行信号不足,所以需要采用塔放来弥补。
另外采用电调天线不但能有效放大上行信号,而且也能有效调节天线的覆盖范围,控制干扰。
d)天线的选型。根据具体条件选择不同类型的天线,包括天线增益、波瓣宽度、极化方式等,以满足不同的覆盖要求。
4.结束语
农村地区3G无线网络规划建设不仅会影响到农村未来网络的性能,而且对运营商能否在新一轮竞争格局中取得有利位置具有重要的作用。因此,在农村地区3G无线网络规划过程中,必须对农村的实际情况进行详细的分析,制定出可行的规划方案,从而加快推动3G无线网络在农村地区的建设。
参考文献:
[1] 王岳.3G无线网络规划与优化测试解决方案[J].移动通信,2005年第10期.
[2] 王东升;赵彦如.3G无线网络规划探讨[J].硅谷,2008年第15期.