福建省泉州市农业学校 张艳红
传统电子线路的实验教学是使用电子线路的分析方法,在最简易的电路图上,根据需要的指标设计电路、选择元件参数并进行手工估算。然后才开始搭建电路,使用选好的仪器或仪表进行测试,验证是否满足指标要求。但是设计出具有高实用价值的电子电路需要考虑的因素和问题很多,在众多类型中选用合适的器件的确不容易,特别是对于职业院校学生,设计之初往往经验不足。而且,大规模集成电路的功能较多,内部电路复杂,仅凭资料是很难掌握它们的各种用法。这就需要一个可以模拟现实的仿真软件。
Multisim是加拿大Interactive Image Technologies公司推出的以Windows为基础的仿真软件,借助虚拟现实技术,使设计者能“如实”地选择、更换元件,能“如实”地操作各种仪器、设备,进行“现场”实验,能快速地模拟、分析、验证所设计电路的性能。往往用于板级的模拟/数字电路板的设计工作。包括电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。
使用Multisim仿真软件,与传统实验方法相比,这种虚拟技术既省时又经济,而且还可避免实验中发生的各种损坏和事故,在教学中更能节省时间和精力,有着广泛的应用前景。
Interactive Image Technologies公司曾推出了一个专门用于电子电路仿真和设计的EDA工具软件EWB(Electronics Workbench)。由于EWB具有许多突出的优点,引起了电子电路设计工作者的关注,迅速得到了推广使用。但是随着电子技术的飞速发展,EWB5x版本的仿真设计功能已远远不能满足复杂电子电路的仿真设计要求。被美国NI公司收购后,更名为NI Multisim,并将用于电路级仿真设计的模块升级为Multisim,于2001年推出了Multisim 2001。Multisim 2001继承了EWB界面形象直观、操作方便、仿真分析功能强大、分析仪器齐全、易学易用等诸多优点,并在功能和操作上进行了较大改进。而V10.0(即NI,National Instruments)是其推出的Multisim新版本。目前美国NI公司的EWB的包含有电路仿真设计的模块Multisim、PCB设计软件Ultiboard、布线引擎Ultiroute及通信电路分析与设计模块Commsim4个部分,能完成从电路的仿真设计到电路版图生成的全过程。Multisim、Ult iboard、Ultiroute及Commsim4个部分相互独立,可以分别使用。
MultiSIM是一种功能非常强大的电路仿真软件,作为虚拟的电子工作平台,提供了较为详细的电路分析手段,可以对电路的静态工作点的分析、动态分析、暂态分析、傅里叶分析、噪声分析、失真度分析、直流扫描分析、传输函数分析、用户自定义分析和灵敏度分析等等,既可以对模拟、数字、模拟/数字混合电路、射频电路进行仿真,又能对部分微机接口电路进行仿真,克服了实验室条件下对传统电子设计工作的限制。帮助设计人员分析电路的各种性能,从而为设计人员提供了一个良好的集成化的虚拟设计实验环境。比如其交流频率分析类似于利用扫描仪对电路进行仿真,可以准确地得出电路的幅频特性和相频特性,分析结果能在分析表窗口中表现为直观的幅频特性和相频特性曲线,以观察电路的增益或相移。参数扫描分析则可用于需要读某个元器件数值进行调节时的电路仿真,它可以让电路中的某个元器件的参数在设置的数值段内连续变化,然后将电路的静态工作点、频率特性和瞬态特性等随此参数的变化以图形的方式显示出来。
具体特点总结如下:
(1)直观的图形界面
整个操作界面就像一个电子实验工作台,绘制电路所需的元器件和仿真所需的测试仪器均可直接拖动到屏幕上,轻点鼠标可用导线将他们连接起来,软件仪器控制面板和操作方式都与实物相似,测量数据、波形和特性曲线如同在真实仪器上看到的。
(2)丰富的元器件
提供世界主流的元件,同时能方便对元件的各种参数进行编辑修改,能利用模型生成器以及代码模式创建模型等功能,创建自己的元器件。
(3)强大的仿真分析功能
以Spice3F5和Xspice的内核作为仿真的引擎,通过Electronic workbench带有的增强设计功能将数字和混合模式的仿真性能进行优化。包括Spice仿真、MUC仿真、VHDL仿真、电路向导等功能。
(4)具有多种常用的虚拟仪表
提供了22种虚拟仪器进行电路工作的测量。
(5)完善的后处理
对分析结果进行的数字运算操作类型包括算术运算、三角运算、指数运行、对数运算、复合运算、向量运算和逻辑运算等。
(6)详细的报告
能够呈现材料清单、元件详细报告、网络报表、原理图统计报告、多余门电路报告、模型数据报告、交叉报告等7种报告。
(7)提高了模拟及测试性能
与NI相关虚拟仪器软件的完美结合,提高了模拟及测试性能。
把MultiSIM软件安装在计算机上,利用提供其提供的元件库和虚拟仪器构建实验电路原理图。
(1)创建电路图
首先在元件库栏中选择所需要的元件,然后拖曳到电路工作区适当的位置,设置其参数,再用鼠标画导线连接电路。对于虚拟仪器的不同输入端,可采用不同的颜色,这样可以方便观察结果.
(2)保存电路文件
电路生成后要保存电路,以免微机出现故障或方便以后调用。
(3)电路仿真分析
在实验中,为了与实际电路一致,三极管采用实际类型。仿真开始和停止只需按下该软件右侧的“启动/停止”开关。
①直流分析:直流工作点的分析是对电路进行进一步分析的基础,利用虚拟万用表测量电路的静态工作点。进行直流分析时,电路中RL短路,Ce开路,交流信号源无效,可知三极管工作在放大区。
②参数分析:参数扫描分析是将电路参数值设置在一定的变化范围内,以分析参数变化对电路性能的影响,该电路中参数R3和Ce的值对实验结果有着直接的影响。通过调节R3,选择合适的静态工作点。Ce则直接影响着电路的频带,由于射极旁路电容Ce对电路的低频响应特性起主要作用,放大电路的下限频率减少,频带变宽。
③交流分析:用虚拟示波器可观察电路输入和输出端的波形,如图1,通过对电流的交流分析,可以得出电路的频率响应、幅频和相频曲线,也可估算中频增益和上限截止频率。从图1中可以看出电路的输入输出波形反相及电路的通频带,根据各元器件的值算出电压放大倍数。
图1 交流分析(波形)
④瞬态分析:瞬态分析是一种非线性时域分析,它可以计算电路的时域响应。分析时,可用直流电作为电路初始状态,瞬时分析的结果(图2)通常是分析节点的电压波形,通过波形判断电路的失真是不是非线性失真,从而进一步改进电路。
图2 瞬态分析
从Multisim的电源箱及其基本工具箱里调出晶闸管及脉冲电压源和电阻负载的模块。按照单相桥式全控整流电路的电路结构图的要求联接仿真模型,如图3所示。
图3 单相桥式全控整流电路仿真模型
晶闸管触发信号是一个VCVS(电压控制电压源)与一个脉冲电压源,使用改变脉冲电压源的参数来改变触发脉冲的宽度和延迟时间,晶闸管选用2N1559,R=200Ω。电路参数设置为:正弦电压源为220V、50HZ,压控电压源设置为V1与V4相同,V2与V3相同。
按照以上触发信号设置,仿真电路输出波形如图4所示。
图4 单相桥式全控整流电路负载波形
依照上述方法,调出相应的仿真模块,按照三相桥式可控整流电路结构图的要求联接仿真模型,如图5所示。
图5 三相桥式可控整流电路的仿真模型
输入信号源数据如下:
二极管型号选1S1888,R=200Ω正弦电压源参数设置为:Voltage RMS为220V,Voltage offset为0,Frequency为50HZ,Time delay为0,Damping Factor为0,Phase为0。按照以上设置,仿真电路输出波形如图6所示,从仿真波形来看,实验结果完全一致。
图6 三相桥式可控整流电路负载波形
Boost电路又称为升压变换器,输出电压与输入电压的关系为:
式中D为占空比,从Multisim的电源箱及其基本工具箱里调出直流电压源、脉冲电压源、功率三极管、二极管和电阻负载的模块。按照单相桥式全控整流电路结构图的要求联接仿真模型。
功率三极管、电阻、电感和电容全部选用现实元件,二极管选用虚拟器件。功率三极管选ZVN33310F。参数设如下:
直流电压源:100V;
受控电压源:1V/V;
脉冲电压源:Pulsed Value为30V,Pulse Width为0.5ms,Period为1ms。
按照以上设置,仿真电路输出波形如图7所示。
图7 Boost电路负载波形
从仿真曲线可见与结果相符。说明了仿真模型的正确性以及直观快捷的特点。
(1)利用Multisim软件的仿真工具箱建立的电子线路典型电路动态仿真模型,具有直观、方便、灵活的特点。使得仿真过程更加方便、快捷,提高了效率和精度。
(2)通过对单相桥式全控电路、三相桥式可控整流电路以及Boost电路的仿真实验结果,充分证实了动态仿真模型的正确性而且在仿真时可以随便改变仿真参数,并用示波器随时观察仿真波形,使得仿真更加具有实时性、直观性。
(3)在电子线路教学中引入Multisim仿真软件作为教学辅助工具,不但可以将课本中的抽象原理赋予形象化,而且可以激发学生的学习兴趣和积极性,从而提高了教学效果。
总之,利用MuthiSIM软件仿真电子线路实验,不仅可以弥补传统实验教学中存在的设备紧张、仪器陈旧、元器件损耗等不足,还大大激发了学生的学习兴趣。但实验教学的目的是培养和提高学生的实践能力,如果用该软件取代实际实验,显然不能完全达到实验教学目的,实践证明只有在教学中将现代化手段与传统实验有机地结合起来,充分发挥各自的优势,才能达到事半功倍的效果。
[1] 马威.仿真软件Multisim在电子技术实践教学中的应用[J].科教文化,2012,11(3):193.
[2] 吴志敏,朱正伟,何宝祥.Multisim10在模拟电子技术课程实验中的应用[J].实验室科学,2012,15(4):112-116.
[3] 蒋先平.Multisim10在电子技术课程设计中的应用[J].科技视界,2012,20(12):62-64.
[4] 薛迎春.Protel仿真功能与Multisim仿真功能的比较[J].广西轻工业,2009,11:84-92.