日本柳杉花粉变应原致敏蛋白组分

2013-01-21 13:30李文静刘光辉
关键词:柳杉异构体表位

李文静,刘光辉

(华中科技大学附属同济医院过敏反应科,武汉 430030)

日本柳杉(Cryptomeriajaponica, Japanese cedar)(以下简称柳杉)为多年生常绿乔木,属松柏门松柏纲松柏目柏科落羽杉亚科日本柳杉属,是该属的唯一树种。柳杉广泛分布于我国和日本,欧洲、北美、尼泊尔、印度等国也多有种植。在日本,柳杉覆盖率可达国土面积的18%,每到花粉季节,这些树木所产生的大量花粉长距离播散(播散距离可100 km以上),导致日本国内超过13%的人口产生过敏,出现全国范围的花粉症[1-2],且其发病率还有逐年上升的趋势[3]。

柳杉与其他柏科植物一样,花粉中含有大量的多糖成分及色素、苯酚等杂质,浸液蛋白产率仅为4.1‰[2]。其蛋白含量虽然很低,但变应原蛋白成分却很复杂,除了公认的2种主要变应原蛋白组分Cry j 1和Cry j 2外[4],还含有其他多种可与柳杉花粉症患者血IgE结合的成分。目前,通过二维电泳及免疫印记等方法共发现了131种可与IgE结合的蛋白组分,其中IgE结合率高于Cry j 1 IgE结合力最低异构体的有52种,相对分子量为35000~97000,等电点为3~10;高于Cry j 2 IgE反应性最高异构体的有31种,相对分子量为35000~97000,等电点为4~10[5]。随着研究的深入,这些成分已被分离、纯化并鉴别,如Cry j 3,CJP-6,CJP-4,CJP-8及CPA9等。

Cry j 1

Cry j 1是最先被分离鉴别的柳杉花粉变应原蛋白组分,发现初期时被称为Sugi碱性蛋白(sugi basic protein,SBP)。SBP为热敏感蛋白,等电点约为9,100 g干花粉可分离出25 mg SBP[2]。1993年,Cry j 1的cDNA及氨基酸序列被正式发布[6]。重组Cry j 1含有374个氨基酸残基,相对分子量在异构体间略有差异,为41000~46000。分子中推定含有4个糖基化位点和3个双硫键。Cry j 1的部分氨基酸序列(RMPRARYGLVHVANNNY)与细菌果胶裂解酶的一致性较高,可达49%~57%[7];相关试验也表明,Cry j 1具有钙离子依赖的果胶裂解酶活性[8];Cry j 1在花粉成熟期表达并定位于花粉外壁[9]。由此推测,Cry j 1的功能可能是在授粉过程中,通过降解雌花而促进花粉管生长[10-11]。Cry j 1异构体种类较多,目前共发现了12种[5,12]。异构体间仅个别氨基酸有差异,分子量大小主要由N端糖链所决定。每种异构体的IgE结合率不同,相对分子量42000、等电点为8.3的异构体结合率最高,约为75%[5]。Cry j 1与其他植物变应原蛋白组分间存在明显交叉反应性,与Amb a 1、Amb a 2的序列一致率分别为65%和53%[8];其与同科植物变应原蛋白组分一致性更高,如Jun a 1(78.9%)、Cha o 1(79-80%)。这种高一致性,在柳杉与其他植物的交叉反应方面发挥了重要作用[13-14]。与柳杉其他变应原组分不同,Cry j 1的表达水平主要由植株克隆决定,气象等因素影响较小[15]。

Cry j 1是一种糖蛋白,分子中有4个糖基化位点。糖基成分研究显示,Cry j 1的糖基是一系列结合于共同核心的α-甘露糖残基上具有双触角结构的葡萄糖胺分支,共同核心为Manα1-6(Manα1-3)(Xylβ1-2)Manβ1-4GlcNAcβ1-4(Fucαl-3)GlcNAc。变异只出现于葡萄糖胺分支的岩藻糖化和半乳糖苷化[16]。此外,Cryj 1还含有(Galβ1-3(Fucα1-4)GlcNAcβ1-)这种Lewis a表位,该糖基表位可能与细胞间的信息交流相关[17]。针对糖基免疫性的研究则显示,Cry j 1的N端糖基只具有免疫原性,不具有变应原性,但可能对蛋白部分构象表位的形成具有一定的意义[16]。其与外周血单个核细胞(peripheral blood mononuclear cells,PBMCs)抗原特异性辅助T细胞(T helper cell,Th)2反应相关,可能参与了变应性炎性反应,并能影响柳杉花粉症的严重程度[18]。但花粉过敏患者对糖基部分的反应并不一致,糖基部分也不包含主要的T细胞表位,因此这些糖基可能是通过与抗原提呈细胞(antigen presenting cells,APCs)的糖类特异性受体结合,加强抗原的呈递,从而促进患者的Th2反应[19-20]。

Cry j 2

Cry j 2是第2个被分离和鉴别的主要变应原蛋白组分,其与Cry j 1之间无明显交叉反应[12]。天然Cry j 2相对分子量为37000,等电点8.6~9.2[2,21-22]。重组Cry j 2前体蛋白有514个氨基酸残基,相对分子量56600,而成熟的重组Cry j 2蛋白有只有388个氨基酸残基,相对分子量42200。推测是由前体蛋白切割下45个N端氨基酸残基和81个C端氨基酸残基而形成成熟Cry j 2[23]。Cry j 2也是糖蛋白,分子中有2个糖基化位点。Cry j 2的cDNA序列与番茄多聚半乳糖醛酸酶的一致性高[24],经试验证实Cry j 2也确有聚甲基半乳糖醛酸酶活性。此外,这种蛋白主要存在于花粉的造粉体中。造粉体也称造粉质体,主要分布于储藏组织如子叶、胚乳、块茎和块根等,是贮存淀粉的质体,是植物细胞内碳水化合物的临时“仓库”。因此,Cry j 2的生物功能可能是与Cry j 1共同在授粉过程中通过降解雌花而促进花粉管的生长[24]。与Cry j 1一样,Cry j 2也有异构体存在,且目前已发现了3种[14,25]。这3种异构体与患者血IgE的结合率并不一致,波动于32.5%~40%。Cry j 2的表达在不同地区及不同克隆植株间都有差异,这种差异主要来自于转录水平的变化[25],但具体影响和调节因素目前尚不清楚。

多数柳杉花粉症患者对Cry j 1和Cry j 2的反应既有特异性IgE升高[26],又有T细胞活化[27-28]。因此,2种蛋白的分子结构中既存在T细胞表位也存在B细胞表位。目前,T细胞表位已发现7个,Cry j 1有3个——p212-224、p235-247、p312-330,Cry j 2有4个——p77-89、p96-107、p192-204、p356-367[29]。B细胞表位只发现1个,是Cry j 2的124KWVNGREI131,这个表位不仅能被人IgE识别,还能被猴和鼠IgE识别[30]。有学者将上述数个T细胞表位组合起来合成杂交多肽,这些肽段保留了各表位的免疫原性和致耐受性,有望下调柳杉特异性T细胞,抑制病理性T细胞反应,从而应用于柳杉花粉症的特异性免疫治疗中[31-32]。

Cry j 3

Cry j 3含有多种异构体,目前已发现的有8种(Cry j 3.1~3.8),部分异构体内部又存在变异型,因此,Cry j 3实际上是一个小型的多基因蛋白家族。除Cry j 3.8为天然状态下分离所得外,其余Cry j 3.1~3.7均由cDNA克隆发现[33-35]。Cry j 3的异构体性质各异,Cry j 3.1和3.2是碱性蛋白,3.4和3.6则是酸性蛋白。其异构体各存在部位也不同,Cry j 3.4和3.6可能定位于液泡内,其他异构体则可能与分泌途径相关[34]。Cry j 3各种异构体在植株不同部位的表达水平各异,Cry j 3.5多表达于花粉中,其余异构体则多表达于成熟雌性球果,雄性球果中也有表达[34]。除此之外,植物根部也有Cry j 3蛋白表达,其他部位如子叶、叶片、茎等则表达稀少[33]。植物激素对各种异构体的调控作用也不同,如Cry j 3.4可由水杨酸、乙烯磷诱导表达增加,3.3和3.6则对这2种物质无类似反应[34]。

天然状态下的Cry j 3(Cry j 3.8)相对分子量为27000,含有225个氨基酸残基。Cry j 3.8与患者血清IgE结合率为27%,其IgE结合力为Cry j 1的115,是Cry j 2的110。但部分患者的IgE结合力也可与Cry j 2相当[35]。Cry j 3各种异构体均具有索马甜结构域及保守的半胱氨酸(Cys)残基,为索马甜样蛋白(Thaumatin-like proteins, TLPs),属于病程相关蛋白(pathogenesis-related protein,PR)-5家族[34]。TLPs在植物种子、果实、花朵等组织发育中发挥着多种作用,一些特殊的TLPs还可保护植物免受渗透压变化、病原攻击、低温冷冻等多种理化刺激因素的影响[36-37]。同时,其表达水平在理化环境等因素(如紫外线B辐射、氯化钠、3-苯三唑、花生四烯酸等)的作用下还会出现升高,导致植物组织中Cry j 3含量随时间及地域等因素变化[34-35]。TLPs广泛存在于各种花粉及水果中[38-39],且多数具有变应原性,同家族变应原蛋白组分间交叉反应性很高,如Cry j 3和Jun a 3,其序列一致性最高可达85.8%,最低也达到了42.5%。因此,这类蛋白包括Cry j 3成为了临床花粉症和口腔变态反应综合症中重要的致敏泛变应原[40]。

CJP-6

天然CJP-6 相对分子量为30000,与患者血IgE结合率高达76%。重组CJP-6含有306个氨基酸残基,相对分子量为33573,含有2个可能的糖基化位点——Nos21-23和208-210。CJP-6与植物源性异黄酮还原酶家族(isoflavone reductase,IFR)同源性高,与松树苯基二氢香豆素苄基还原酶的序列一致性高达73%,与大豆及土豆中IFR家族蛋白的一致性也分别达到62%和60%[41]。此外,IFR家族中还含有多种植物花粉及水果变应原,如Bet v 5 及Pyr c 5等[42],因此CJP-6也可能在植物种间交叉反应方面发挥了一定作用。

CJP-4

CJP-4含有281个氨基酸残基,相对分子量为29286,等电点为4.51,与患者血IgE结合率很高,变性状态下为52.5%,天然状态下高达100%,因此,CJP-4是一种非常重要的变应原蛋白组分,具有很高的临床意义[43]。CJP-4热稳定性好。与植物来源IV类壳多糖酶同源性高,序列一致率达43.1%~65.6%[44]。相关研究也证实,CJP-4确实具有内切壳多糖酶活性。此外,CJP-4还与乳胶变应原具有交叉反应。因此,CJP-4可能也是柳杉花粉中重要的泛变应原成分[43],在柳杉花粉与其他植物变应原的交叉反应中发挥着重要作用。

CJP-8

CJP-8含有165个氨基酸残基,相对分子量为17409,等电点为7.39。重组CJP-8相对分子量为20500,与患者血IgE结合率为37.5%。CJP-8序列中含有8个保守的半胱氨酸残基,这些残基形成4个二硫键,这些是脂质转运蛋白(lipid transfer proteins, LTPs)的特征性结构,因此,CJP-8属于LTPs家族[45]。植物非特异性LTPs是植物变应原蛋白的重要组成部分,广泛存在于食物、乳胶及花粉中[46-47],可导致各种植物种属间交叉反应,诱发口腔变态反应综合征等临床症状。

CPA9

CPA9含有757个氨基酸残基,相对分子量为80148.79,等电点为6.22。天然CPA9与患者血IgE结合率高达88.5%,提示其也是柳杉花粉的主要变应原蛋白组分之一[48]。CPA9属于枯草杆菌样丝氨酸蛋白酶家族(亚家族S8A)[49],与同家族的甜瓜变应原Cuc m 1同源性高[50],序列一致率40.1%,相似率达到55.1%。因此,CPA9及枯草杆菌样丝氨酸蛋白酶家族在植物间的交叉反应性方面应该也发挥了一定的作用。

总  结

综上所述,柳杉花粉蛋白含量虽然很低,但其变应原蛋白成分复杂、种类多样。目前分离鉴别的变应原蛋白已有7种,但仍尚存多种未能鉴别出的成分。然而,即使是这7种变应原蛋白,也在空间结构、生物功能、具体发挥作用的肽段表位、糖基成分及功能等方面存在许多未解决的问题,需要继续进行更广泛及深入的研究来明确。

[1]Okuda M. Epidemiology of Japanese cedar pollinosis throughout Japan[J]. Ann Allergy Asthma Immunol, 2003, 91:288-296.

[2]Yasueda H, Yui Y, Shimizu T, et al. Isolation and partial characterization of the major allergen from Japanese cedar (Cryptomeria japonica)pollen[J]. J allergy Clin. Immunol. 1983, 77:77-86.

[3]Akiyoshi Konno. Practical Guideline for the Management of Allergic Rhinitis in Japan-Perennial Rhinitis and Pollinosis[M]. 6th ed. Tokyo: Life Science, 2008.

[4]Kawashima T. Taniai M. Taniguchi Y, et al. Antigenic Analyses of Sugi Basic Protein by Monoclonal Antibodies; I. Distribution and Characterization of B-Cell-Tropic Epitopes of Cry j I Molecules[J]. Int Arch Allergy Immunol, 1992, 98:110-117.

[5]Fujimura T, Shigeta S, Kawamoto S et al. Two-dimensional IgE-binding spectrum of Japanese cedar (Cryptomeria japonica) pollen allergens[J]. Int Arch Allergy Immunol, 2004, 133:125-135.

[6]Sone T, Komiyama N, Shimizu K, et al. Cloning and sequencing of cDNA coding for Cry j I,a major allergen of Japanese cedar pollen[J]. Biochem Biophy research comm, 1994, 199:619-625.

[7]Tamaki SJ, Gold S, Robeson M, et al. Structure and organization of the pel genes from Erwinia chrysanthemi EC16[J]. J Bacteriol, 1988:170:3468-3478.

[8]Taniguchi Y, Ono A, Sawatani M, et al. Cry j 1, a major allergen of Japanese cedar pollen, has pectate lyase enzyme activity[J]. Allergy, 1995, 50:90-93.

[9]Takahashi Y, Mizoouchij, Katagiri S. Development and distribution of the major pollen allergen (Cry j I) in male flower buds of Japanese cedar (Cryptomeria japonica) [J]. Jpn J Allergol, 1989, 38:1354-1358.

[10] Mccormick S. Molecular analysis of male gametogenesis in plants[J]. Trends Genet, 1992, 7:298-303.

[11] Wing RA, Yamaguchi J, Larabell SK, et al. Molecular and genetic charcterization of two pollen-expressed genes that have sequence similarity to pectate lyases of the plant pathogen Erwinia[J]. Plant Mol Biol, 1989, 14:17-28.

[12] Taniai M, Ando S, Usui M, et al. N-terminal amino acid sequence of a major allergen of Japanese cedar pollen (Cry j I) [J]. FEBS, 1988, 239:329-332.

[13] Midoro-Horiuti T, Goldblum RM, Kurosky A, et al. Molecular cloning of the mountain cedar (Juniperus ashei) pollen major allergen, Jun a 1[J]. J Allergy Clin Immunol, 1999,104:613-617.

[14] Suzuki M, Komiyama N, Itoh M, et al. Purification, characterization and molecular cloning of cha o 1, a major allergen of Chamaecyparis obtusa (japanese cypress) pollen[J]. Molecular Immunology, 1996, 33:451-460.

[15] Goto Y, Kondo Y, Hayashi E, et al. Influences of genetic and environmental factors on the concentration of the allergen Cry j 1 in sugi (Cryptomeria japonica) pollen[J]. Tree Physiology, 2004, 24:409-414.

[16] Ogawa H, Hijikata A, Amano M, et al. Structures and contribution to the antigenicity of oligosaccharides of Japanese cedar (Cryptomeria japonica) pollen allergen Cry j I: relationship between the structures and antigenic epitopes of plant N-linkedcomplex-type glycans[J]. Glycoconjugate J, 1996, 13:555-566.

[17] Maeda M, Kamamoto M, Hino K, et al. Glycoform analysis of Japanese cedar pollen allergen, Cry j 1[J]. Biosci Biotechnol Biochem, 2005, 69:1700-1705.

[18] Okano M, Kino K, Takishita T, et al. Roles of carbohydrates on Cry j 1, the major allergen of Japanese cedar pollen, in specific T-cell responses[J]. J Allergy Clin Immunol, 2001, 108:101-108.

[19] Stahl PD, Ezekowitz RA. The mannose receptor is a pattern recognition receptor involved in host defense[J]. Curr Opin Immunol, 1998, 10:50-55.

[20] Kahn S, Wleklinski M, Aruffo A, et al. Trypanosoma cruzi amastigote adhesion to macrophages is facilitated by the mannose receptor[J]. J Exp Med, 1995,182:1243-1245.

[21] Sakaguchi M, Inouye S, Taniai M, et al. I dentification of the second major allergen of Japanese cedar pollen[J]. 1990, 45:309-312.

[22] Ohtsuki T, Taniguchi Y, Kohno K, et al. Cry j 2, a major allergen of Japanese cedar pollen, shows polymethyl- galacturonase activity[J]. Allergy, 1995, 50:483-488.

[23] Motoshi Namba, Mayumi Kurose, Kakuji Torigoe, et al. Molecular cloning of the second major allergen, Cry j II, from Japanese cedar pollen[J]. FEBS Letters, 1994, 353:124-128.

[24] Sheehy RE, Pearson J, Brady CJ, et al. Molecular characterization of tomato fruit polygalacturonase[J]. 1987, 208:30 -36.

[25] Futamura N, Kusunoki Y, Mukai Y, et al. Characterization of Genes for a Pollen Allergen, Cry j 2, of Cryptomeria japonica[J]. Int Arch Allergy Immunol, 2007, 143:59-68.

[26] Hashimoto M, Nigi H, Sakaguchi M, et al. Sensitivity to two major allergens (Cry jI and Cry jII) in patients with Japanese cedar (Cryptomeria japonica) pollinosis[J]. Clin Exp Allergy, 1995, 25:848-852.

[27] Sone T, Morikubo K, Miyahara M, et al. T cell epitopes in Japanese cedar ( Cryptomeria japonica) pollen allergens: choice of major T cell epitopes in Cry j 1 and Cry j 2 toward design of the peptide-based immunotherapeutics for the management of Japanese cedar pollinosis[J]. J Immunol,1998,161:448-457.

[28] Sugimura K, Hashiguchi S, Takahashi Y, et al. Th1Th2 response profiles to the major allergens Cry j 1 and Cry j 2 of Japanese cedar pollen[J]. Allergy, 1996,51:732-740.

[29] Saito S, Hirahara K, Kawaguchi J, et al. Identification of T cell determinants in Cry j 1 and Cry j 2 of size suitable for immunotherapy against Japanese cedar pollinosis[J]. Annu Rep Sankyo Res Lab, 2000, 52:49-58.

[30] Tamura Y, Kawaguchi J, Serizawa N, et al. Analysis of sequential immunoglobulin E-binding epitope of Japanese cedar pollen allergen (Cry j 2) in humans, monkeys and mice[J]. Clin & Exper Allergy, 2003, 33:211.

[31] Hirahara K, Tatsuta T, Takatori T, et al. Preclinical evaluation of an immunotherapeutic peptide comprising 7 T-cell determinants of Cry j 1 and Cry j 2, the major Japanese cedar pollen allergens[J]. J Allergy Clin Immuno, 2001,108:194.

[32] Yoshitomi T, Hirahara K, Kawaguchi J, et al. Three T-cell determinants of Cry j 1 and Cry j 2, the major Japanese cedar pollen antigens, retain their immunogenicity and tolerogenicity in a linked peptide[J]. Immunology, 2002, 107:517-522.

[33] Futamura N, Mukai Y, Sakaguchi M, et al. Isolation and characterization of cDNAs that encode homologs of a pathogenesis-related protein allergen from Cryptomeria japonica[J]. Biosci Biotechnol Biochem, 2002, 66:2495-2500.

[34] Futamura N, Tani N, Tsumura Y, et al. Characterization of genes for novel thaumatin-like proteins in Cryptomeria japonica[J]. Tree Physiol, 2006, 26:51-62.

[35] Fujimura T, Futamura N, Midoro-Horiuti T, et al. Isolation and characterization of native Cry j 3 from Japanese cedar ( Cryptomeria japonica) pollen[J]. Allergy, 2007, 62:547-553.

[36] Chen WP, Chen PD, Liu DJ,et al. Development of wheat scab symptoms is delayed in transgenic wheat plants that constitutively express a rice thaumatin-like protein gene[J]. Theor Appl Genet, 1999:755-760.

[37] Anand AT, Zhou HN, Trick BS, et al. Greenhouse and field testing of transgenic wheat plants stably expressing genes for thaumatin-like protein, chitinase and glucanase against Fusarium graminearum[J]. J Exp Bot, 2003, 54:1101-1111.

[38] Hsieh LS, Moos M Jr, Lin Y. Charac-terization of apple 18 and 31 kd allergens by microsequencing and evaluation of their content during storage and ripen-ing[J]. J Allergy Clin Immunol, 1995, 96:960-970.

[39] Jensen-Jarolim E, Santner B, Leitner A, et al. Bell peppers ( Capsicum annuum) express allergens (profilin, pathogenesis-related protein P23 and Bet v 1) depending on the horticultural strain[J]. Int Arch Allergy Immunol, 1998, 116:103-109.

[40] Midoro-Horiuti T, Brooks EG, Goldblum RM. Pathogenesis-related proteins of plants as allergens[J]. Ann Allergy Asthma Immunol, 2001, 87:261-271.

[41] Kawamoto S, Fujimura T, Nishida M, et al. Molecular cloning and characterization of a new Japanese cedar pollen allergen homologous to plant isoflavone reductase family[J]. Clin Exp Allergy, 2002, 32:1064-1070

[42] Karamloo F, N Schmitz, Stephan Scheurer, et al. Molecular cloning and characterization of a birch pollen minor allergen, Bet v 5, belonging to a family of isoflavone reductase-related proteins[J]. J Allergy Clin Immunol, 1999, 104:991-999.

[43] Fujimura T, Shigeta S, Suwa T, et al. Molecular cloning of a class IV chitinase allergen from Japanese cedar (Cryptomeria japonica) pollen and competitive inhibition of its immunoglobulin E-binding capacity by latex C-serum[J]. Clin Exp Allergy, 2005, 35:234-243.

[44] Pastorello EA, Farioli L, Pravettoni V, et al. Identification of grape and wine allergens as an endochitinase 4, a lipid-transfer protein, and a thaumatin[J]. J Allergy Clin Immunol, 2003, 111:350-359.

[45] Ibrahim ARN, Kawamoto S, Nishimura M, et al. A New Lipid Transfer Protein Homolog Identified as an IgE-Binding Antigen from Japanese Cedar Pollen[J]. Bios Biot Bioch, 2010,74:504-509.

[46] Salcedo G, Sanchez-Monge R, Diaz-Perales A, et al. Plant non-specific liqid transfer proteins as food and pollen allergens[J].Clin Exp Allergy, 2004, 34:1336-1341.

[47] Salcedo G, Sanchez-Monge R, Barber D, et al. Plant non-specific liqid transfer proteins: an interface plants defence and human allergy[J].Biochim Biophys Acta, 2007, 1771:781-791.

[48] Ibrahim ARN, Kawamoto S, Mizuno K, et al. Molecular cloning and immunochemical characterization of a new Japanese Cedar pollen allergen homologous to plant subtilisin-like serine protease[J]. WAO Journal, 2010, 3:262-265.

[49] Rawlings ND, Barrett AJ, Bateman A. MEROPS: the peptidase database[J]. Nucleic Acids Res, 2010, 38:227-233.

[50] Cuesta-Herranz J, Pastor C, Figueredo E, et al. Identification of Cucumisin (Cuc m 1), a subtilisin-like endopeptidase, as the major allergen of melon fruit[J]. Clin Exp Allergy, 2003, 33:827-833.

猜你喜欢
柳杉异构体表位
汉滩病毒糖蛋白免疫反应性表位研究进展
高效液相色谱法测定替格瑞洛原料药中异构体的含量
不同海拔高度对柳杉生长及材质的影响
急性髓系白血病中DLX4基因异构体的差异性表达及其临床相关性分析
间日疟原虫传播阻断疫苗新型候选抗原Pvs48 T.B 细胞表位的预测与分析
苍南县开展柳杉毛虫防治工作
柳杉间人文艺术酒店
戊唑醇去除异构体的制备方法
第一性原理对氮掺杂石墨烯作为锂空电池阴极材料还原氧分子的机理研究*
乙型肝炎病毒B和C基因型S蛋白特异性CTL表位保守性分析