小学数学教师课堂提问的理论分析

2012-12-27 01:51杜先存
红河学院学报 2012年2期
关键词:数学教师理论小学生

万 飞,杜先存

(红河学院教师教育学院,云南 蒙自 661100)

小学数学教师课堂提问的理论分析

万 飞,杜先存

(红河学院教师教育学院,云南 蒙自 661100)

课堂提问是一种常见的教学策略,也是课堂教学中师生进行有效对话的重要形式.尤其是在小学数学课堂教学中,教师的课堂提问对小学生数学知识的获得和对小学生数学思维能力的发展起着至关重要的作用.笔者参考国内外有关的学习理论,提出小学数学教师课堂提问的四个理论依据:最近发展区的学习理论、建构主义学习理论、有意义学习理论和合作学习理论.

小学;数学教师;课堂提问

“提问”是最古老的也是使用最普遍的教学手法,它是古希腊教育家苏格拉底著名“产婆术”的核心,又是当今世界每一个教师都经常使用的教学方法.现代思维科学认为问题既是思维的起点,又是创造的前提,一切发明创造都是从问题开始的.课堂提问是教师以提问为手段进行教育教学的一种实践活动,是教师在教学中不能忽略的一种教学方法.做好课堂提问,不仅对调动小学生学习的积极性和主动性,提升其思维能力起着十分重要的作用,还能使教学有声有色,提高教学效率.爱因斯坦曾说过:提出一个问题往往比解决一个问题更重要.作为一名小学数学教师,怎样提问才是一个好的提问呢?其关键是提问要讲究艺术,要问到“点子”上.教师首先要掌握常用的课堂提问方式,其次要用一定的理论知识来支持自己的提问,最后要对自己的课堂提问进行反思.在掌握理论知识的基础上,来设计课堂提问,提出的问题才能符合小学生学习的需要和发展的需要.

笔者参考国内外有关的学习理论,提出小学数学教师课堂提问应遵循以下理论:

1 最近发展区学习理论

维果茨基认为“儿童的教学可以定义为人为的发展”,认为教学必须要考虑儿童已达到的水平并要走在儿童发展的前面.他认为:“儿童的心理发展存在两个水平:第一个水平是实际发展水平,第二个是潜在发展水平,儿童在别人帮助或与同伴合作的情况下解决问题所表现出来的心理发展水平.这两个水平之间的差异称为“最近发展区”.”[1]最近发展区是指介于儿童能够独立完成的认知任务与儿童在成人的指导下所能够完成的认知任务之间的差距,见图1.

最近发展区图1 最近发展区示意图

不同年龄阶段的学生在学习发展水平上有不同的特点,数学课堂中教师提出的问题,应考虑学生的接受能力,同时教师的课堂提问也应促进学生思维能力的发展.提出的问题不能偏难,又不能过易,既要保证所提出的问题是学生能接受的,又要使问题有一定的难度,让学生“跳一跳摘桃子”.小学阶段的学生,思维发展水平不高,对逻辑性和抽象性很强的数学理解起来有一定的困难,因此,教师提出的问题不能超过学生现有的水平,必须是学生能力范围内能回答的.但教师的提问又不能一味去迁就学生的能力,应有一定的难度,为学生创造学习的“最近发展区”.

例如:教学解决一般应用问题时,教师的问题情境是这样的:我们马上要开展“六·一”儿童节的联欢会了.三(1)班负责布置会场,现有气球若干,他们要按照3个红气球,2个黄气球,1个蓝气球的顺序把所有气球串起来装饰会场.教师提出的问题是:你们知道第20个气球是什么颜色的吗?为什么?

在这个案例中,教师设计的问题情境是小学生很感兴趣的话题,提出的问题也是小学生能接受的,并带有一定的难度,让学生“跳一跳摘桃子”.

2 建构主义学习理论

建构主义学习理论认为:“学习过程不是学习者被动地接受知识和由外向内的传递过程,而是积极地主动地建构知识和经验的过程,也就是说学习的结果不是学生接受了知识,而是学生个体知识经验得到了改组”.[1]建构主义认为数学学习的特点为:学生的数学学习是数学知识“再发现”的学习;学生的数学学习需要教师的“点拨”和“引导”;学生的数学学习需要较强的抽象概括能力;学生的数学学习受情感因素的制约;学生的数学学习要经历不同的阶段.

皮亚杰认为学习是一种主动建构的过程.在他看来,学习并不是个体获得越来越多外部信息的过程,而是学到越来越多有关他们认识事物的程序,即建构了新的认知图式.所以当皮亚杰派学者在研究学习时,他们常常问:“你是怎么知道的?”而不是:“你知道吗?”在他们看来,如果儿童不能解释他是怎么知道的,就说明他实际上还没有学会.[3]小学数学学习是小学生自我建构数学知识的活动,教师的提问要起到引导学生有效建构数学知识的作用.

例如:对于“长方形和正方形的周长”这节课,教师在一开始就提出了这样的问题:看到这个课题,你们想知道些什么?想获得些什么?

生1(预设):看到“长方形和正方形的周长”这个题目,我想知道什么叫做长方形或正方形的周长.

生2(预设):我想知道怎样去测量一个长方形或一个正方形的周长,我们有哪些测量方法.

生3(预设):我们学习了长方形和正方形的周长后,在实际生活中有没有用.

教师:同学们说得非常棒,我们今天这节课就一起来讨论并解决这些问题.

可见,这节课的学习,在教师的提问下,学生积极主动地探究思考问题,并在已有的基础上建构出如何去计算一个长方形或一个正方形的周长,如何与实际生活建立起联系等学习的目标,最终得到计算长方形和正方形的周长公式,掌握它们的实际运用.教师这样的提问就是一个好的提问.

3 有意义学习理论

所谓意义学习,奥苏伯尔认为就是将符号所代表的新知识与学习者认知构中已有的适当观念建立起非人为的,实质性的联系.相反,如果学习者并未理解符号所代表的知识,只是依据字面上的联系,记住某些符号的词句或组合,则是一种死记硬背式的机械学习.[2]

小学生学习数学,不仅仅是掌握前人所积累的数学知识和这些知识的代表符号,还要积极地思考,正确理解这些符号“背后的故事”,才能把已有的知识转化为自己的.如果学生只记住了乘法口诀,只是会流利地大声背诵着“一一得一、一二得二、一三得三……九九八十一”,但不理解它所代表着的意义,那么这种学习就是所谓的机械式学习.

教师如何让小学生不去死记硬背乘法口诀,这就需要教师精心设计教学过程,关键在于教师该提出什么样的问题,让学生获得有意义的学习.布鲁纳认为,小学低年级学生往往能够像鹦鹉学舌似的说出“几乘以几等于18”,但他们对“9×2”与“2×9”,或“3×6”与“6×3”有没有不同常常感到吃不准.[3]小学数学教师在课堂教学中如何让学生发现“9×2”与“2×9”,或“3×6”与“6×3”有什么不同,教师可以这样设计提问:

师:你们玩过跷跷板吗?

生:玩过.

师:在玩跷跷板时,你们有没有发现跷跷板会平衡呢?它为什么会平衡?

生(预设):因为我们坐在两头的人一样重,它就平衡了.

师:老师昨天自制了一个跷跷板,还有一些质量为2克、9克、3 克、6克的小积木若干个,我们现在就一起来玩玩这个跷跷板.

师:我在跷跷板左边的这个小盘里放2个9克的积木,问:右边这个小盘要放几个积木它才会平衡呢?(让学生到讲桌上动手放放看)

生1:3个6克的.

生2:6个3 克的.

生3:9个2克的.

这样,学生不仅掌握了9×2=18,2×9=18,3×6=18,6×3=18的乘法概念,还把乘法概念与头脑中已有的几个相同的数连加的概念建立起联系,掌握了代数运算中的交换律.

4 合作学习理论

合作学习是指在课堂教学中,教师按一定的原则把学生分成若干小组(2—6人一组),当教师提出问题或学习要求后需要小组内或小组间进行合作、讨论,完成共同的学习任务,并有一定的责任分工的互助性学习,最终掌握知识的一种学习方法.新课标倡导自主、合作、探究的学习方式.合作学习对学生的学习和发展具有明显的促进作用.合作学习不仅能在一定程度上增强学生的学习积极性、提高学生的学业成绩,而且能够增强他们的自尊,帮助他们习得团体规范、形成社会交往技能,建立起一种友爱、合作的人际关系.[3]

数学作为一门抽象性和逻辑性较强的学科,小学生更加需要通过合作学习来理解、掌握知识.但合作学习应当与恰当的教学内容相结合,并不是所有提出的问题都需要学生进行合作学习后作答.同时,教师也要避免把学生间的合作学习流于形式化,教师问题的提出只是让学生“活”起来进行交谈,一些不需要讨论的问题,也让学生进行讨论.相反,一些需要给时间去讨论的问题,教师不给充足的时间,学生还没开始就已经结束了.

例如:有这样一位教师在上“异分母分数加减法”这一课时,教师在复习完同分母分数的加(减)法后,就直接提出这样的问题:“如果把同分母分数的加(减)法改成异分母分数的加(减)法,我们应该怎样计算呢?请同学们按分好的小组合作研究一下.”

三分钟后,教师就急急忙忙地请一个小组作答,这一位同学说:“可以把分数转化成小数再进行计算.”教师没做出任何的点评,就说:“认为XX同学说的正确的请举手.”结果除了几位平时比较爱动脑的小同学皱紧眉头思索着什么外,其他的学生都举起了手.这时,这位教师没有提问这些没举手的小同学:“为什么你们不举手,你们的计算方法和XX同学的不一样吗?”他也没提出反驳意见或不同的解决策略,只是说道:“少数服从多数,方案通过,异分母加(减)法的计算就是先把分数化成小数后再进行计算.”接着简单举例验证,合作学习很快就结束了.

在这个案例中教师的课堂提问是要求学生进行合作学习的,但他没给学生充足的讨论时间,把“合作学习”当成了提问中的一句可有可无的话.

课堂提问作为教师课堂教学和师生间互动的一种常见手段,同时,也是一门艺术.小学教师的课堂提问必须源于学生的最近发展区学习理论、建构主义学习理论、有意义学习理论和合作学习理论,根据这四种学习理论设计的问题,才能做到有效地提问,才能让学生从问题中获得发展.为理解而提问,让学生开动脑筋!只有这样,提问才能有助于教学,有助于提高教学效率.

[1]伍新春.儿童发展与教育心理学[M]. 北京:高等教育出版社,2004(07).

[2]施良方.学习论[M].北京:人民教育出版社,2001.

[3]蒋名平.合作学习理论及实施策略[J].安徽教育学院学报.2006(09).

[4]张国琴.对小学数学课堂提问有效性的案例反思[J].吉林教育,2008(32).

The Theoretical Analysis of Primary School Mathematics Teacher Questioning

WAN Fei,DU Xian-cun
(College of Educationin, Honghe University, Mengzi 661100,China)

Classroom questioning is a common teaching strategy, it is an important form between teachers and students in effective dialogue. Especially in primary mathematics classroom instruct ion, the teacher’s questioning is very important to pupils ' mathematical know ledge acquisition and the mathematical thinking ability development. The authors have asked for foreign-related learning theory effective application on which primary school mathematics teacher questioning of four theoretical basis: the learning theory of recent development area, the learning theory of construct ivist and meaning ful learning theory and cooperative learning theory.

elementary school;mathernatic teacher;chassroom qaest ioning

G45

A

1008-9128(2012)02-117-03

2011-11-05

万飞(1969—),女,云南建水人,副教授.研究方向:数学课程与教学论.

[责任编辑 姜仁达]

猜你喜欢
数学教师理论小学生
坚持理论创新
神秘的混沌理论
小学数学教师资格证面试研究
理论创新 引领百年
相关于挠理论的Baer模
怎样培养小学生的自学能力
浅析如何提高小学数学教师素养
小学数学教师如何才能提高课堂的趣味性
我是小学生
初中数学教师不可忽视的几种教学方法