王秋悦,邹亚学,唐家明,李素芬*
(河北科技师范学院1动物科技学院,2生命科技学院,河北 秦 皇岛,066600)
活性氧自由基(Reactive oxygen species,ROS)被认为是许多疾病如衰老、动脉粥样硬化和神经坏死等的致病因子。另外,ROS通过诱导DNA损伤、诱发肿瘤形成和刺激细胞增殖在肿瘤形成中发挥作用。为预防ROS诱发的损伤,细胞中含有由ROS代谢酶和ROS中和分子组成的抗氧化系统。通过催化超氧离子自由基(O-2)分解为过氧化氢(H2O2)和氧(O2),超氧化物歧化酶(Superoxide dismutase,SOD)为机体提供了清除正常代谢过程或氧化应激中产生的O-2的第一道防线[1]。在真核生物体内有3种SOD:存在于线粒体基质中的含锰超氧化物歧化酶(Manganese-containing superoxide dismutase,MnSOD,又称为SOD2)和存在于细胞浆中或被分泌到细胞外液中的铜锌超氧化物歧化酶(Copper-zinc containing superoxide dismutase,CuZnSOD 或SOD1)[2]。由于线粒体是产生 O-2的主要场所,因此MnSOD可能在保护细胞免受O-2氧化损伤中发挥重要作用。MnSOD作为细胞内防止氧化应激保护酶的重要作用已经在基因敲除或转基因动物模型中得到证实,MnSOD基因敲除小鼠10天内即因为心肌坏死[3]和神经萎缩[4]而死亡。相反,转基因小鼠线粒体中高度表达人MnSOD即可保护动物免受氧化应激产生的肺损伤[5]、急性阿霉素诱发的心肌损伤[6]和局部缺血引起的脑损伤[7]。近年来,对MnSOD的分子生物学研究和不同动物MnSOD基因和cDNAs的分离,无疑促进了MnSOD生理功能的研究。
人们陆续克隆、测序和分析了人[8,9]、大鼠[10]、小鼠[11,12]和牛[13]MnSOD 全基因序列,这些动物的MnSOD基因序列的结构具有明显的保守性,均含有5个外显子和4个内含子。人、小鼠和牛MnSOD全基因均为单拷贝基因,但大鼠可能有2个拷贝。所有这4种动物的启动子区结构相近,均具有看家基因的典型特征,即无上游 TATA 或 CAAT 盒子,但富含 GC[14,15]。
Meyrick等[13]比较了牛和大鼠MnSOD基因启动子区,发现2个种属间明显不同。在人MnSOD基因转录起始部位的上游,有一长约400 bp的区段,G+C含量高达78%,集中分布着7个特异蛋白1(Specificity Protein-1, Sp1,5′-GGGCGG-3′) 和3个激活蛋白-2(Activator Protein-2,AP-2,5′-CCGCGGGCG-3′)转录因子结合序列[16]。牛转录起始位点前190 bp序列与人相似性较高,有8个Sp1和2个AP-2结合位点。与人和牛MnSOD基因启动子区分别含有7和8个Sp1结合序列不同,大鼠MnSOD基因启动子区只有2个Sp1结合序列[10],且含有2个人和牛MnSOD基因启动子区没有的SV40核心序列。很显然,人MnSOD基因启动子结构与牛的同源性比与大鼠的高,这与大哺乳动物如牛、羊、猪和人与小动物如小鼠和大鼠MnSOD基因转录有较大差异的报道相一致。
郝守峰等[17]对肉鸡心肌细胞中与MnSOD基因转录相关的转录因子及其结合序列分析发现,在肉鸡心肌细胞的核蛋白中存有与MnSOD基因转录调节相关的核转录因子Sp1和AP-2,且能与MnSOD基因启动子区特异性结合位点结合,其中在-79~-58有1个与人和大鼠相同的Sp1结合位点核心序列(5′-GGGGCGGG-3′),在鸡MnSOD基因启动子区中AP-2结合位点核心序列与现有文献中报道的人和大鼠以及一些病毒AP-2结合位点核心序列不同,分别为位于-34~-14(5′-GGCGCAGGC-3′)和-338~ -319(5′-CCCAAGGTC-3′)。
对人和鼠MnSOD基因启动子区的分析发现,除多个Sp1和AP-2结合位点外,还含有核因子-卡巴B(Nuclear Factor-κB,NF-κB)和激活蛋白-1(Activator Protein-1,AP-1)等转录因子结合序列,可能在 Mn-SOD 基因表达调节中发挥着重要的作用[10,16,18]。Zhang[19]从人白细胞基因组文库中得到 1个 MnSOD基因组DNA序列,其5′-端上游序列中又发现了一些重要的调节元件,如1个急性期反应序列(Acute response element,ARE)、2 个与早期生长因子 1 基因(Early growth response 1,Egr-1)调节序列(5′-GCGGGGGCG-3′)相近的序列(5′-GCGGGGCG-3′)等。MnSOD 基因结构中存在与 Egr-1 基因类同的调节序列,是其具有辐射诱导特性的有力证据。
尽管MnSOD在许多组织和细胞中的高水平表达,其表达仍受到多种细胞内和环境因素的诱导,表明MnSOD是一个应激反应型基因[20]。上调MnSOD转录的因素有细胞因子如白细胞因子1(Interleukin-1,IL-1)[21~23],肿瘤坏死因子-α(TNF-α)[22,24]、细菌脂多糖(Lipopolysaccharide,LPS)[21]和干扰素-γ(Interferon-γ,IFN-γ)[25]。细胞因子诱导的增强子元件位于小鼠[26]、大鼠和人[27]MnSOD 基因第 2 个内含子的236 bp区,结合位点包括NF-κB,CCAAT增强子结合蛋白(CCAAT enhancer binding proteins,C/EBP)和核因子-1(Nulear factor-1,NF-1)。蛋白激酶 C(Protein kinase C,PKC)刺激因子十四烷酰法波(醇)醋酸酯(12-O-tetradecanoylphorbol-13-acetate,TPA)通过 CREB-1/ATF-1 类转录因子诱导 MnSOD 基因转录,但与NF-κB或AP-1无关[18]。一些抗肿瘤药物如长春灭瘟碱(vinblastin)、紫杉酚(taxol)和长春新碱(vincristine)也是通过PKC诱导MnSOD基因转录[28]。血小板衍生的生长因子通过转录因子Egr-1 诱导 NIH3T3 细胞 MnSOD 基因转录[29]。
基因启动子区DNA顺式结合元件与其相应DNA结合蛋白即转录因子的互作是调节转录的关键。MnSOD基因启动子区转录起始部位上游集中分布的核转录因子Sp1和AP-2强烈提示,Sp1和AP-2转录因子在MnSOD基因的转录调节中有重要作用。Sp1是一组具有3个锌指结构、与富含GC序列DNA结合的蛋白家族[30,31]。Sp1在哺乳动物组织中广泛表达,以不同的亲和力与特异序列结合,参与许多基因的转录调节[32~35]。由于重叠排列的Sp1结合位点可以替代TATA或CAAT盒子在起始转录中的作用而直接启动基因的转录[36],因此,在启动子区无TATA或CAAT盒子的基因即所谓的看家基因如二氢叶酸还原酶[37]、胸苷酸合成酶[38]和腺嘌呤脱氨酶[39]等,以及一些非看家基因如胰岛素样生长因子结合蛋白-2[40]、雄激素受体[41]表皮生长因子受体[42]和红细胞内特异酶基因如丙酮酸激酶[43]转录调节中起着非常重要的作用。
由于MnSOD启动子区无TATA或CAAT盒子,因此Sp1在MnSOD转录调节中的作用更加重要。已经发现,Sp1是人MnSOD基因基础性转录必需的正调节转录因子[20,44],其调节基因转录的机制可能包括以下几个方面:(1)招募基本转录装置蛋白。Sp1可直接与转录起始复合物中的一些蛋白相互作用,从而通过招募基本转录装置或促进其装配而激活基因转录。Sp1可通过谷氨酸富集区或C末端结构域与转录起始复合物中的TFIID复合物相互作用[45]。TFIID复合物由多亚基组成,Sp1可与其中的TBP(TATA-box binding protein)和至少1种果蝇[dTAF(Ⅱ)110]和2种人TAFs(TBP associated factors)相互作用[hTAF(Ⅱ)130和hTAF(Ⅱ)55]。TAFs非基本转录所必需,但却是介导多种转录因子及增强子转录激活作用的必需因子。除TAFs外,Sp1的转录激活作用还需要CRSp/Med复合物(cofactor required for Sp1/mediator)。CRSp可介导多种增强子结合因子和核心转录装置之间的相互作用,该复合物亚基间的重组可能是实现转录激活作用基因特异性的机制[46]。(2)改变染色质修饰和染色体结构。在启动子处,Sp1可同时招募组蛋白乙酰化酶和去乙酰化酶来实现对该处组蛋白的乙酰化状态的快速动态调节,从而激活或抑制基因的表达[47,48]。Sp1可能与染色质重塑复合体SWI/SNF家族的成员相互作用,从而通过改变染色质的可接近性来调节基因的转录[49]。Sp1还被发现具有边界活性,能结合于人β球蛋白基因座[50],从而阻滞异染色质结构的扩布,维持基因的转录活性状态。(3)引发DNA loop的形成。对于含有多拷贝Sp1结合位点的调节序列,Sp1可通过D结构域形成多聚体而拉近相离甚远的DNA序列,使DNA形成环形,协同激活靶基因的表达[51]。Sp1首先形成4聚体,其后多个4聚体聚集于DNA结合位点。这种高度组织的多聚体起到了浓集蛋白质相互作用位点的作用,从而提高了局部转录因子的浓度。
转录因子Sp1调节基因转录的基本前提是其DNA结合活性。Sp1 DNA结合活性的降低即意味着转录起始能力的丧失。Sp1 DNA结合活性提高可能有以下几个原因:首先,Sp1基因表达量提高。小鼠胚胎发育过程中胸腺、肺、肝和脾脏等器官Sp1 mRNA表达量增加[52]。TPA激活人肝癌细胞HepG2中MnSOD基因转录提高时Sp1蛋白表达量也提高[53]。其次,与其他转录因子的互作。所有受Sp1调节的启动子中均含有AP-2结合位点,AP-2通过与Sp1竞争结合位点抑制转录[54]。另外,转录后修饰、糖基化、磷酸化或形成多聚体都会改变Sp1的DNA结合活性[55]。细胞内的氧化还原状态也影响Sp1的DNA结合活性。由于半胱氨酸残基广泛存在于许多转录因子的DNA结合区,其氧化还原状态直接影响转录因子的DNA结合活性,因此转录因子的DNA结合活性及其转录调节活性对细胞内的氧化还原状态敏感。体外研究发现,大鼠肝脏中Sp1的DNA结合区随年龄增长逐渐被氧化,从而发生不可逆性的DNA结合活性降低[56]。衰老和氧化剂可引起Sp1蛋白DNA结合区半胱氨酸残基氧化,从而降低Sp1的DNA结合活性;相反,还原剂如谷胱甘肽和硫氧还蛋白则可恢复Sp1的DNA结合活性[57,58]。Li等[59]发现,饲粮锰能提高肉鸡心肌细胞中Sp1的DNA结合活性,推测锰可能通过MnSOD影响细胞内的氧化还原状态,从而调节Sp1的DNA结合活性。
细胞内的氧化还原状态也影响AP-2的DNA结合活性。AP-2蛋白多肽链中有7个半胱氨酸残基,其中6个半胱氨酸残基位于DNA结合区和二聚体化功能区,2个半胱氨酸残基位Cys222和Cys243正好位于DNA结合区[60]。AP-2是另一类与DNA特异序列结合的蛋白,其结合序列也富含GC,并以结合位点依赖方式刺激基因的选择性表达[61,62],在细胞发育、胚胎分化和肿瘤形成中发挥重要调节作用[63,64]。AP-2家族包括 AP-2α,AP-2β和AP-2γ[65]。虽然3种蛋白 N-末端转录激活区结构不同,但DNA 结合 区却高度保守。尽管AP-2在肿瘤基因erbB-2[66],erbB-3[67]和细胞循环调节基因p21WAF1[68]转录调节中起激活剂作用,但也发现它对几个基因如星状细胞Ⅰ型胶原[69]、K3角蛋白[70]、乙酰胆碱酯酶[54]和C/EBP[71]的转录起抑制作用。SV40转染成纤维细胞中高浓度的AP-2蛋白明显抑制MnSOD基因的表达,同样WI38成纤维细胞转染SV40后MnSODmRNA和蛋白水平明显降低[72,73],表明AP-2在MnSOD基因转录调节中起负调节作用。关于AP-2调节基因转录的机制,在前几个基因的转录抑制中,AP-2均是通过取代与AP-2结合位点临近或重叠的正调节转录因子或与其竞争结合位点而发挥其抑制作用,且AP-2蛋白与启动子区DNA的特异性结合是其发挥抑制作用的必要条件[74]。在MnSOD基因中,由于AP-2与DNA的结合能力比Sp1强,因此,AP-2可能与正调节转录因子Sp1互作或竞争结合位点,从而有效抑制MnSOD基因的转录[36,74]。也有报道,Sp1与AP-2的比值决定基因的转录[70,75]。硒处理降低原代培养肝细胞中AP-2的DNA结合活性,对SP1的DNA结合活性无影响,因此启动子区Sp1与AP-2的比值升高,MnSOD转录上调。另外,AP-2在稳定染色体高级结构中也可能发挥作用。已经发现,MnSOD转录激活时染色体结构发生了变化[76]。
NF-κB和AP-1是已知的直接受细胞内ROS激活的转录因子[77],同时这2个转录因子也是多种信号传导途径的下游作用因子[78],是MnSOD基因转录调节的正调节因子。NF-κB在核质中与抑制因子IkB结合而无激活活性,一旦IκB被磷酸化激活后(可能是受PKC激活)即降解,NF-κB与IκB分开而进入核内,并与其结合序列结合后激活基因转录。许多因素如细胞因子TNF-α和IL-1α[79],细菌脂多糖LPS[21],离子辐射和产生高氧的试剂如H2O2和二酰胺[80]均可引起IκB蛋白降解和NF-κB的激活。抗氧化剂抑制几乎所有刺激因素引起的NF-κB激活,但是抗氧化剂如巯基还原剂对激活的NF-κB与DNA的结合活性却有相反的作用,还原性巯基如DTT,半胱氨酸和还原型硫氧还蛋白能够使NF-κB DNA结合区半胱氨酸残基保持还原状态,从而提高激活的NF-κB DNA结合活性。
氧化应激、离子辐射和生长因子通过诱导AP-1组分c-fos和c-jun的表达激活核转录因子AP-1,从而诱导人和果蝇MnSOD的表达[81]。AP-1蛋白中DNA结合区保守性半胱氨酸保持还原状态仍是其DNA结合活性所必需的[82]。
多种信号传导途径参与MnSOD基因表达的调节[27]。对ROS敏感的丝裂原激活蛋白激酶(mitogen-activated protein kinases,MAPKs)对细胞内外刺激如紫外线[83]、ROS[84]及病毒[85]等产生应答,并通过直接磷酸化特定的核转录因子从而影响其DNA结合活性,或与其它蛋白相互作用间接影响转录因子的转录活性,调节基因转录表达。MAPKs是一组刺激诱导型丝氨酸/苏氨酸蛋白激酶,主要包括细胞外信号调节激酶(extracellular signal-regulated kinases,ERK)、c-Jun 氨基末端激酶(c-Jun amino-terminal kinases,JNK)和p38MAPK[86,87]。尽管每组MAPK通路都有许多各自独特的特性,但每组通路都由依次顺序激活的3个激酶即MAPK,MAPK激酶(MAPK kinase,MAPKK)和MAPK激酶(MAPKK kinase,MAPKKK)所组成[88,89]。ERKs主要对各种生长刺激发生反应,与细胞增殖和分化有关[90],而 JNKs和p38MAP激酶主要参与细胞应激反应,如代谢、炎症、氧应激等[91,92]。肝炎病毒复制期引起的氧化应激通过p38MAPK和JNK通路激活AP-1,增加MnSOD基因表达[93]。生理剂量的花生四烯酸通过H2O2激活p38MAPK途径,诱导HepG2细胞中MnSOD转录[84]。
综上所述,由于MnSOD广泛参与细胞的生长、分化、增殖和肿瘤的形成,在保护细胞免受氧化应激、炎症反应、离子辐射和神经毒作用方面发挥重要作用,进一步研究MnSOD基因表达的特点,无论对预防细胞和组织生理性或病理性氧化损伤都具有重要意义。
[1]FRIDOVICH I.Superoxide radical and superoxide dismutase[J].Annu Rev Biochem,1995,64:97-112.
[2]WEISIGER R A,FRIDOVICH I.Mitochondrial superoxide dismutase:Site of synthesis and intra-mitochondrial localisation[J].J Biol Chem,1973,248:4 793-4 796.
[3]LI Y,HUANG T T,CARLSON E J,et al.Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase[J].Nature Genet,1995,11:376-381.
[4]LEBOVITZ R M,H ZHANG,H VOGEL,et al.Neurodegeneration,myocardial injury,and perinatal death in mitochondria superoxide dismutase-deficient mice[J].Med Sci,1996,93:9 782-9 787.
[5]WISPE J R,WARNER B B,Clark J C,et al.Human Mn-superoxide dismutase in pulmonary epithelial cells of transgenic mice confers protection from oxygen injury[J].J Biol Chem,1992,267:23 937-23 941.
[6]YEN H C,OBERLEY T D,VICHITBANDHA S,et al.The protective role of manganese superoxide dismutase agains t adriamycin-induced acute cardiac toxicity in transgenic mice[J].J Clin Inves,1996,98:1 253-1 260.
[7]KELLER J N,KINDY M S,HOLTSBERG F W,et al.Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury:suppression of peroxynitrite production,lipid peroxidation,and mitochondrial dysfunction[J].J Neurosci,1998,18:687-697.
[8]CHURCH S L,GRANT J W,RIDNOUR L A,et al.Increased manganese superoxide dismutase expression suppresses the malignant phenotype of human melanoma cells[J].Med Sci,1993,90:3 113-3 117.
[9]WAN X S,DEVALARAJA M N,ST CLAIR D K.Molecular structure and organization of the human manganese superoxide dismutase gene[J].DNA Cell Biol,1994,13:1 127-1 136.
[10]HO Y S,HOWARD A J,CRAPO J D.Molecular structure of a functional rat gene for manganese-containing superoxide dismutase[J].Am J Respir Cell Mol Biol,1991,4:278-286.
[11]DISILVESTRE D,KLEEBERGER S R,JOHNS J,et al.Structure and DNA sequence of the mouse MnSOD gene[J].Mamm Genome,1995,6:281-284.
[12]JONES P L,KUCERA G,GORDON H,et al.Cloning and characterization of the murine manganous superoxide dismutaseencoding gene[J].Gene,1995,153:155-161.
[13]MEYRICK B,MAGNUSON M A.Identification and functional characterization of the bovine manganous superoxide dismutase promoter[J].Am J Respir Cell Mol Biol,1994,10:113-121.
[14]DYNAN W S.Promoters for housekeeping genes[J].TIG,1986,2:196-197.
[15]JONES N C,J RIGBY P W,ZIFF E B.Trans-acting protein factors and the regulation of eukaryotic transcription:lessons from studies on DNA tumor viruses[J].Genes Dev,1988,2:267-281.
[16]WAN X S,DEVALARAJA M N,ST CLAIR D K.Molecular structure and organization of the human manganese superoxide dismutase gene[J].DNA Cell Biol,1994,13:1 127-1 136.
[17]郝守峰,吕林,李素芬,等.锰对肉鸡心肌细胞MnSOD基因转录调节机制的研究[J].营养学报,2010,32(1):47-51.
[18]KIM H P,ROE J H,CHOCK P B,et al.Transcriptional activation of the human manganese superoxide dismutase gene mediated by tetradecanoylphorbol acetate[J].J Biol Chem,1999,74:37 455-37 460.
[19]ZHANG J,HAGOPIAN-DONALDSON S,SERBEDZIJA G,et al.Neural tube,skeletal and body wall defects in mice lacking transcription factor AP-2[J].Nature,1996,381:238-41.
[20]ST CLAIR D.Manganese Superoxide Dismutase:Genetic Variation and Regulation[J].J Nutr,2004,134:3190S-3191S.
[21]VISNER G A,DOUGALL W C,WILSON J M,et al.Regulation of manganese superoxide dismutase by lipopolysaccharide,interleukin-1,and tumor necrosis factor[J].J Biol Chem,1990,265:2 856-2 864.
[22]VISNER G A,CHESROWN S E,MONNIER J,et al.Regulation of manganese superoxide dismutase:IL-1 and TNF induction in pulmonary artery and microvascular endothelial cells[J].Biochem Biophys Res Commun,1992,188:453-462.
[23]DOUGALL W C,NICK H S.Manganese superoxide dismutase:a hepatic acute phase protein regulated by interleukin-6 and glucocorticoids[J].Endocrinol,1991,129:2 376-2 384.
[24]WONG G H W,ELWELL J H.Manganous superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor[J].Cell,1989,58:923-931.
[25]HARRIS C A,DERBIN K S,HUNTE-MCDONOUGH B,et al.Manganese superoxide dismutase is induced by IFN-gamma in multiple cell types.Synergistic induction by IFN-gamma and tumor necrosis factor or IL-1[J].J Immunol,1991,147:149-154.
[26]JONES P L,PING D,BOSS J M.Tumor necrosis factor alpha and interleukin-1beta regulate the murine manganese superoxide dismutase gene through a complex intronic enhancer involving C/EBP-beta and NF-kappaB[J].Mol Cell Biol,1997,17:6 970-6 981.
[27]ROGERS R J,CHESROWN S E,KUO S,et al.Cytokine-inducible enhancer with promoter activity in both the rat and human manganese-superoxide dismutase genes[J].Biochem J,2000,347:233-242.
[28]DAS K C,GUO X L,WHITE C W.Protein kinase C delta-dependent induction of manganese superoxide dismutase gene expression by microtubule-active anticancer drugs[J].J Biol Chem,1998,273:34 639-34 645.
[29]MAEHARA K,OH-HASHI K,ISOBE K I.Early growth-respon-sive-1-dependent manganese superoxide dismutase gene transcription mediated by platelet-derived growth factor[J].FASEB J,2001,15:2 025-2 026.
[30]BERG J M.Sp1 and the subfamily of zinc finger proteins with guanine-rich binding sites[J].Proc Natl Acad Sci,1992,89:11 109-11 110.
[31]SETO E,LEWIS B,SHENK T.Interaction between transcription factors Sp1 and YY1[J].Nature,1993,365:462-464.
[32]KIM S,ONWUTA U S,LEE Y I,et al.The retinoblastoma gene product regulates Sp1-mediated transcription[J].Mol Cell Biol,1992,12:2 455-2 463.
[33]KINGSLEY C,A WINOTO.Cloning of GT box-binding proteins:a novel Sp1 multigene family regulating T-cell receptor gene expression[J].Mol Cell Biol,1992,12:4 251-4 261.
[34]KRIWACHI R W,SCHULTZ S C,A STEITZ T,et al.Sequence-specificc recognition of DNA by zinc-finger peptides derived from the transcription factor Sp1[J].Med Sci,1992,89:9 759-9 763.
[35]GILL G,PASCAL E,TSENG Z H,et al.A glutamine-rich hydrophobic patch in transcription factor Sp1 contacts the dTAFII110 component of the Drosophila TFIID complex and mediates transcriptional activation[J].Med Sci,1994,91:192-196.
[36]YEH C C,WAN X S,ST CLAIR D K.Transcription regulation of 5′proximal promoter of the human manganese superoxide dismutase gene[J].DNA Cell Biol,1998,17:921-930.
[37]SWICK A G,BLAKE M C,KAHN J W,et al.Functional analysis of GC element binding and transcription in the hamster dihydrofo-late reductase gene promoter[J].Nucleic Acids Res,1989,17:9 291-9 304.
[38]DENG T,DAWEL L,JEHN C,et al.Structure of the gene for mouse thymidylate synthase.Locations of introns and multi-ple transcriptional start sites[J].Biol Chem,1986,261:16 000-16 005.
[39]VALERIO D,DUYVESTEYN M G C,DEKKER B M M,et al.Characterization and expression of a gene with a remarkable promoter[J].EMBO J,1985,4:437-443.
[40]BOISCLAIR Y R,BROWN A L,CASOLA S,et al.Three clustered Sp1 sites are required for efficient transcription of the TATA-less promoter of the gene for insulin-like growth factor-binding protein-2 from the rat[J].J Biol Chem,1993,268:24 892-24 901.
[41]FABER P W,J ROOIJ H C,SCHIPPER H J,et al.Two different,overlapping pathways of transcription initiation are active on the TATA-less human androgen receptor promoter[J].J Biol Chem,1993,268:9 296-9 301.
[42]XU J,THOMPSON K L,SHEPHARD L B,et al.T3 receptor suppression of Sp-1-dependent transcription from the epidermal growth factor receptor promoter via overlapping DNA-binding sites[J].J Biol Chem,1993,268:16 065-16 073.
[43]MAX-AUDIT I,ELEOUET J,ROMEO P.Transcriptional regulation of the pyruvate kinase erythroid-specific promoter[J].J Biol Chem,1993,268:5 431-5 437.
[44]XU Y,PORNTADAVITY S,ST CLAIR D K.Transcriptional regulation of the human manganese superoxide dismutase gene:the role of specificity protein 1(Sp1)and activating protein-2(AP-2)[J].Biochem J,2002,362:401-412.
[45]EMILI A,GREENBLATT J,INGLES C J.Species-specific interaction of the glutamine-rich activation domains of Sp1 with the TATA box-binding protein[J].Mol Cell Biol,1994,14:1 582-1 593.
[46]TAATJES D J,TJIAN R.Structure and function of CRSp P Med2,a promoter-selective transcriptional coactivator complex[J].Mol Cell,2004,14:675-683.
[47]JANG S I,STEINERT P M.Loricrin expression in cultured human keratinocytesis controlled by a complex interplay between transcription factors of the Sp1,CREB,AP1,and AP2 families[J].J Biol Chem,2002,277:42 268-42 279.
[48]SUN J M,SPENCER V A,LI L,et al.Estrogen regulation of trefoil factor 1 expression by estrogen receptor alpha and Sp proteins[J].Exp Cell Res,2005,302:96-107.
[49]LU F,ZHOU J,WIEDMER A,et al.Chromatin remodeling of the Kaposi sarcoma-associated herpes virus ORF50 promoter correlates with reactivation from latency[J].J Virol,2003,77:11 425-11 435.
[50]ISHII K,LAEMMLI U K.Structural and dynamic functions establish chromatin domains[J].Mol Cell,2003,11:237-248.
[51]NAKATSUKASA T,SHIRAISHI Y,NEGI S,et al.Site-specific DNA cleavage by artificial zinc finger-type nuclease with cerium binding peptide[J].Biochem Biophys Res Commun,2005,330:247-252.
[52]SAFFER J D,JACKSON S P,ANNARELLA M B.Developmental expression of Spl in the mouse[J].Mol Cell Biol,1991,4:2 189-2 199.
[53]PORNTADAVITY S,XU Y,KININGHAM K,et al.TPA-activated transcription of the human MnSOD gene:role of transcription factors Sp-1 and Egr-1[J].DNA Cell Biol,2001,20:473-481.
[54]GETMAN D K,MUTERO A,INOUE K,et al.Transcription factor repression and activation of the human acetylcholinesterase gene[J].J Biol Chem,1995,270:23 511-23 519.
[55]DHARMAVARAM R M,LIU G,MOWERS S D,et al.Detection and characterization of Sp1 binding activity in human chondrocytes and its alterations during chondrocyte dedifferentiation[J].J Biol Chem,1997,272:26 918-26 925.
[56]AMMENDOLA R,MESURACA M,RUSSO T,et al.The DNA-binding efficiency of Sp1 is affected by redox changes[J].Eur J Biochem,1994,225:483-489.
[57]KNOEPFEL L,STEINKUHLER C,CARRI M T,et al.Role of zinc-coordination and of the glutathione redox couple in the redox susceptibility of human transcription factor Sp1[J].Biochem Biophys Res Commun,1994,201:871-877.
[58]MIAO K,J POTTER J,ANANIA F A,et al.Effect of acetaldehyde on Sp1 binding and activation of the mouse alpha 2 collagen promoter[J].Arch Biochem Biophys,1997,341:140-152.
[59]LI S F,LU L,HAO S F,et al.Dietary manganese modulates expression of the manganese-containing superoxide dismutase gene in chickens[J].J Nutr,2011,141:189-194.
[60]BUETTNER R,KANNAN P,IMHOF A,et al.An alternatively spliced mRNA from the AP-2 gene encodes a negative regulator of transcriptional activation by AP-2[J].Mol Cell Biol,1993,13:4 174-4 185.
[61]MITCHELL P J,WANG C,JIANR T.Positive and negative regulation of transcription in vitro:enhancer-binding protein AP-2 is inhibited by SV40 T antigene[J].Cell,1987,50:847-861.
[62]WANG D,SHIN T H,KUDLOW J E.Transcription factor AP-2 controls transcription of the human transforming growth factor-α gene[J].J Biol Chem,1997,272:14 244-14 250.
[63]KANNAN P,BUETTNER R,CHIAO P J,et al.N-ras oncogene causes AP-2 transcriptional self-interference,which leads to transformation[J].Genes Dev,1994,8:1 258-1 269.
[64]SCHORLE H,MEIER P,BUCHERT M,et al.Transcription factor AP-2 essential for cranial closure and craniofacial development[J].Nature,1996,381:235-238.
[65]WILLIAMSON J A,BOSHER J M,SKINNER A,et al.Chromosomal mapping of the human and mouse homologues of two new members of the AP-2 family of transcription factors[J].Genomics,1996,35:262-264.
[66]BOSHER J M,TOTTY N F,HSUAN J J,et al.A family of AP-2 proteins regulates c-erbB-2 expression in mammary carcinoma[J].Oncogene,1996,13:1 701-1 707.
[67]SKINNER A,HURST H C.Transcriptional regulation of the c-erbB-3 gene in human breast carcinoma cell lines[J].Oncogene,1993,8:3 393-3 401.
[68]GEE J M,ROBERTSON J F,ELLIS I O,et al.Immuno-histochemical analysis reveals a tumour suppressor-like role for the transcription factor AP-2 in invasive breast cancer[J].J Pathol,1999,189:514-520.
[69]CHEN A P,BENO D W A,DAVIS B H.Suppression of stellate cell type I collagen gene expression involves AP-2 transmodulation of nuclear factor-1-dependent gene transcription[J].J Biol Chem,1996,271:25 994-25 998.
[70]CHEN T T,LI W R,CASTRO-MUNOZLEDO F,et al.Regulation of K3 keratin gene transcription by Sp1 and AP-2 indierentiating rabbit corneal epithelial cells[J].Mol Cell Biol,1997,17:3 056-3 064.
[71]JIANG M S,TANG Q Q,MCLENITHAN J,et al.Derepression of the C/EBPα gene during adipogenesis:Identification of AP-2α as a repressor[J].Proc Natl Acad Sci USA,1998,95:3 467-3 471.
[72]SAFFORD S E,OBERLEY T D,URANO M,et al.Suppression of fibrosarcoma metastasis by elevated expression of manganese superoxide dismutase[J].Cancer Res,1994,54:164 261-164 265.
[73]XU Y,KRISHNAN A,WAN X S,et al.Mutations in the promoter reveal a cause for the reduced expression of the human manganese superoxide dismutase gene in cancer cells[J].Oncogene,1999,8:93-102.
[74]ZHU C H,HUANG Y,OBERLEY L W,et al.A family of AP-2 proteins down-regulate manganese superoxide dismutase expression[J].J Biol Chem,2001,276:144 007-144 013.
[75]CARMEN T,MARYA M,MARIBELIS R,et al.Loss of activator protein-2α results in overexpression of protease-activated receptor-1 and correlates with the malignant phenotype of human melanoma[J].J Biol Chem,2003,278:46 632-46 642.
[76]KUO S,CHESROWN S E,MELLOTT J K,et al.In vivo architecture of the manganese superoxide dismutase promoter[J].J Biol Chem,1999,274:3 345-3 354.
[77]SEN C K,PACKER L.Antioxidant and redox regulation of gene transcription[J].FASEB J,1996,414:709-720.
[78]QADRI I,IWAHASHI M,CAPASSO J M,et al.Induced oxidative stress and activated expression of manganese superoxide dismutase during hepatitis C virus replication:role of JNK,p38MAPK and AP-1[J].Biochem J,2004,378:919-28.
[79]MASUDA A,LONGO D L,KOBAYASHI Y,et al.Induction of mitochondrial manganese superoxide dismutase by interleukin 1[J].FASEB J,1988,2:3 087-3 091.
[80]OBERLEY T D,OBERLEY L W.Antioxidant enzyme levels in cancer[J].Histol Histopathol,1997,12:525-535.
[81]ANGEL P,KARIN M.The role of jun,fos and the AP-1 complex in cell proliferation and transformation[J].Biochem Biophys Acra,1991,1 072:129-157.
[82]ABATE C,PATEL L,RAUSCHER F J,et al.Redox regulation of fos and jun DNA-binding activity in vitro[J].Sci,1990,249:1 157-1 161.
[83]DEVARY Y,GOTTLIEB R A,LAU L F,et al.Rapid and preferential activation of the c-jun gene during the mammalian UV response[J].Mol Cell Biol,1991,11:2 804-2 811.
[84]BIANCHI A,BECUWE P,FRANCK P,et al.Induction of MnSOD gene by arachidonic acid is mediated by reactive oxygen species and p38 mapk signaling pathway in human HepG2 hepatoma cells[J].Free Rad Biol Med,2002,32:1 132-1 142.
[85]GU Y,WU R F,XU Y C,et al.HIV Tat activates c-Jun amino-terminal kinase through an oxidant-dependent mechanism[J].Virol,2001,286:62-71.
[86]CHEN Z,GIBSON T B,ROBINSON F,et al.MAP kinases[J].Chem Rev,2001,101:2 449-2 476.
[87]KYRIAKIS J M,AVRUCH J.Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation[J].Physiol Rev,2001,81:807-869.
[88]TORRESA M,FORMANB H J.Redox signaling and the MAP kinase pathways[J].BioFactors,2003,17:287-296.
[89]ROUX P P,BLENIS J.ERK and p38 MAPK-Activated Protein Kinases:a Family of Protein Kinases with diverse biological functions[J].Microbiol Mol Biol Rev,2004,68:320-344.
[90]WADA T,PENNINGER J M.Mitogen-activated protein kinases in apoptosis regulation[J].Oncogene,2004,23:2 838-2 849.
[91]WHITMARSH A J,DAVIS R J.Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways[J].J Mol Med,1996,74:589-607.
[92]PEARSON G,ROBINSON F,BEERS GIBSON T,et al.Mitogen-activated protein(MAP)kinase pathways:regulation and physiological functions[J].Endocrinol Rev,2001,22:153-183.
[93]QADRI I,IWAHASHI M,CAPASSO J M,et al.Induced oxidative stress and activated expression of manganese superoxide dismutase during hepatitis C virus replication:role of JNK,p38MAPK and AP-1[J].Biochem J,2004,378:919-928.