刘敏,宋卫东
(安徽师范大学数计学院,安徽 芜湖 241000)
复射影空间中具有常数量曲率的全实子流形
刘敏,宋卫东
(安徽师范大学数计学院,安徽 芜湖 241000)
通过活动标架法,研究了复射影空间中具有常数量曲率的全实子流形,得到其成为全脐子流形的刚性定理,并推广了相关结果.
复射影空间;全实子流形;数量曲率;全脐
设CPn+p是具有Fubini-Study度量的复n+p维复射影空间,全纯截面曲率为常数4.设J为CPn+p的复结构,Mn为CPn+p的实n维子流形.如果Mn上每点切空间被J变换到自身,则称Mn是CPn+p的全纯子流形.与此相反,若Mn上每点的切空间被J变换到该点法空间,则称Mn为CPn+p的全实子流形.
关于具有常数量曲率子流形,文献[1]最早研究了空间形式中的常数量曲率超曲面,引入了一个自共轭的二阶椭圆算子,这个算子现在仍是研究具有常数量曲率子流形的重要工具.文献[2-4]应用这个算子研究了各种空间中具有常数量曲率的子流形.本文试图将文献[1-2]的结果推广到复射影空间,得到了:
定理 1 设Mn是CPn+p中具有常数量曲率和平行单位平均曲率向量场的紧致全实子流形,且其标准常数曲率R≥1,则
[1]Cheng S Y,Yau S T.Hypersurfaceswith constant scalar curvature[J].M ath.Ann.,1977,225:195-204.
[2]Zhang J F.An rigidity theorem for submanifolds in Sn+pwith constant scalar curvature[J].Zhejiang Univ. Science:A,2005,6(4)1:322-328.
[3]宋卫东,刘敏.关于局部对称共形平坦空间中具有常数量曲率的子流形[J].数学物理学报,2010,30:1102-1110.
[4]朱静勇.Com p lete totally real pseudo umbilical subm anifolds with constant scalar curvature in a com p lex space form[J].纯粹数学与应用数学,2011,27(1):116-122.
[5]张量.关于复射影空间的全实伪脐子流形[J].数学研究与评论,2008(2):421-428.
[6]Okumua M.Hypersurfaces and a pinching p roblem on the second fundamental tensor[J].Amer.J.Math., 1974,96:207-213.
[7]Li A M,Li J M.An intrinsic rigidity theorem for m inim al subm anifolds in sphere[J].A rch.M ath.,1992, 58:582-594.
On totally real subm anifolds with constant scalar carvatu re in the com p lex p ro jective space
Liu M in,Song Weidong
(College of M athem atics and Com puter Science,Anhui Norm al University,W uhu 241000,China)
In this paper,by choosing a suitable fram e field,we discussed the totally real subm anifolds with constant scalar curvture in the com p lex p rojective space and obtain a rigidity theorem that it becomes totally umbilical subm anifold and im p rove the related resu lts.
com p lex projective space,totally real subm anifolds,scalar curvature,totally umbilical
O186.12
A
1008-5513(2012)06-0749-08
2012-06-12.
安徽省高等学校优秀青年人才基金(2011SQRL021ZD);安徽省高等学校自然科学研究项目基金(KJ2011Z149).
刘敏(1980-),硕士,讲师,研究方向:子流形几何.
2010 M SC:53C42,52B25