摘要:本文介绍了高层建筑抗震设计的理论,技术,措施,以及短柱处理。
关键词:高层建筑;地震;抗震;设计;措施;短柱
中图分类号:TU97文献标识码:A文章编号:
Abstract:In this paper, the author introduced the design for aseismatic building and puncheon
Key words:building;earthquake;aseismatic;design;solution;puncheon
0 前言:
我国《高层建筑混凝土结构技术规程》规定,10层及10层以上或房屋高度大于28m的住宅建筑和房屋高度大于24m的其他高层民用建筑。地震是地壳在内、外营力作用下,集聚的构造应力突然释放,产生震动弹性波,从震源向四周传播引起的地面颤动。地震对高层建筑的危害是巨大的,在高层建筑设计中,抗震设计是非常重要的一个环节。
一、抗震分析理论
1.拟静力理论:在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。
2.反应谱理论:以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础。
3.动力理论:把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。
二、抗震分析与设计的新趋势
1.基于性能的结构抗震设计现场理论PBD ( Performance-based Design)方法。
上世纪90年代美国学者Bertero. R和Bertero. V. V等研究人员首先明确提出了基于性能的抗震设计概念,这种方法主要是将结构的性能目标转化为破损指标和位移需求,并且对基于性能的抗震设计进行了持续的研究,并将其作为新一代的抗震设计方法。
2.动力时程响应分析的状态空间迭代法。
这种方法把 现代 控制理论中的状态空间理论应用到高层建筑结构动力响应问题。根据结构动力方程,引入位移与速度为状态变量,导出状态方程,给出非齐次状态方程的解,进而建立状态空间迭代计算格式。经工程实例验算,具有较高精度。特别对多自由度体系的多输入、多输出等问题的动力响应解法,效率较高。
3.材料参数随机性的抗震模糊可靠度分析。
该方法从结构整体性能出发,改变过去对结构抗震可靠度的研究只考虑荷载的不确定性而忽略了其他多种不确定因素,综合考虑了材料参数的变异性,地震烈度的随机性,烈度等级界限的随机性与模糊性对结构抗震可靠度的影响。研究成果可用于对现有的结构进行抗震可靠度评估,并可用于指导基于可靠度理论的结构抗震设计。
三、三水准、两阶段
我国《建筑抗震规范》对建筑的抗震设防提出“三水准、两阶段”的要求,“三水准”即“小震不坏,中震可修,大震不倒”。当遭遇第一设防烈度地震即低于本地区抗震设防烈度的多遇地震时,结构处于弹性变形阶段,建筑物处于正常使用状态。建筑物一般不受损坏或不需修理仍可继续使用。因此,要求建筑结构满足多遇地震作用下的承载力极限状态验算,要求建筑的弹性变形不超过规定的弹性变形限值。当遭遇第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏。但经一般修理或不需修理仍可继续使用。因此,要求结构具有相当的延性能力(变形能力)不发生不可修复的脆性破坏。当遭遇第三设防烈度地震即高于本地区抗震设防烈度的罕遇地震时,结构虽然破坏较重,但结构的非弹性变形离结构的倒塌尚有一段距离。不致倒塌或者发生危及生命的严重破坏,从而保障了人员的安全。因此,要求建筑具有足够的变形能力,其弹塑性变形不超过规定的弹塑性变形限值。三个水准烈度的地震作用水平,按三个不同超越概率(或重现期)来区分的:多遇地震:50年超越概率63.2%,重现期50年;设防烈度地震(基本地震):50年超越概率10%,重现期475年;罕遇地震:50年超越概率2%-3%,重现期1641-2475年,平均约为2000年。
对建筑抗震的三个水准设防要求,是通过“两阶段”设计来实现的,其方法步骤如下:第一阶段:第一步采用与第一水准烈度相应的地震动参数,先计算出结构在弹性状态下的地震作用效应,与风、重力荷载效应组合,并引入承载力抗震调整系数,进行构件截面设计,从而满足第一水准的强度要求;第二步是采用同一地震动参数计算出结构的层间位移角,使其不超过抗震规范所规定的限值;同时采用相应的抗震构造措施,保证结构具有足够的延性、变形能力和塑性耗能,从而自动满足第二水准的变形要求。第二阶段:采用与第三水准相对应的地震动参数,计算出结构(特别是柔弱楼层和抗震薄弱环节)的弹塑性层间位移角,使之小于抗震规范的限值。并采用必要的抗震构造措施,从而满足第三水准的防倒塌要求。
四、罕遇地震作用下的弹塑性分析方法
结构弹塑性分析可分为弹塑性动力分析和弹塑性静力分析两大类。弹塑性动力分析,采用杆模型和层模型等简化的结构计算模型。杆模型计算的优点是可以得到杆件状态随时间的变化过程,也可得到各楼层的反应。但耗时多、费用昂贵、结果数据量大且分析比较繁冗,在国外也极少采用。层模型计算能得到各楼层的反应,例如层剪力、楼层侧移和层间转角、层间位移延性比等,它主要是从宏观上即层间变形检验结构在大震作用下的安全性。层模型计算的数据相对较少,适宜于进行宏观检验,也便于计算多条地震波作用。上世纪九十年代中期一些学者相继提出弹塑性静力分析方法用于结构抗震分析。这种方法并非创新,但有较多优点。由弹塑性静力分析,可以了解结构中每个构件的内力和承载力的关系以及各杆件承载力间的相互关系;检查是否符合强柱弱梁,并可发现设计的薄弱部位;还可得到不同受力阶段的侧移变形,给出“底部剪力一预点侧移”关系曲线以及“层剪力一层间变形”关系曲线等等。后者即可作为各楼层的“层剪力一层间位移”骨架线,它是进行层模型弹性时程分析所必须的参数。只要结构一定,其结果不受地震波的影响,只与初始楼层水平荷载的分布有关。
五、高层建筑结构抗震设计措施
结构体系应符合下列各项要求:
1 应具有明确的计算简图和合理的地震作用传递途径。
2 应避免因部分结构或构件破坏而导致整个结构丧失抗震能力或对重力荷载的承载能力。
3 应具备必要的抗震承载力,良好的变形能力和消耗地震能量的能力。
4 对可能出现的薄弱部位,应采取措施提高其抗震能力。
在对结构的抗震设计中,除要考虑概念设计、结构抗震验算外,历次地震后人们在限制建筑高度,提高结构延性(限制结构类型和结构材料使用)等方面总结的抗震经验一直是各国规范重视的问题。当前,在抗震设计中,从概念设计,抗震验算及构造措施等三方面入手,在将抗震与消震(结构延性)结合的基础上,建立设计地震力与结构延性要求相互影响的双重设计指标和方法,直至进一步通过一些结构措施(隔震措施,消能减震措施)来减震,即减小结构上的地震作用使得建筑在地震中有良好而经济的抗震性能是当代抗震设计规范发展的方向。而且,强柱弱梁,强剪弱弯和强节点弱构件在提高结构延性方面的作用已得到普遍的认可。
1、隔震技术。目前,国际上较热门的工程抗震新技术就是隔震技术,它是通过把如橡胶隔震垫等隔震消能装置安放在结构物底部和基础(或底部柱顶)之间,来隔开上部结构和基础,从而改变结构的动力作用和动力特性,有利于减轻结构物的地震反应。实践证明,隔震技术具有很大的垂直承载力及垂直压缩刚度,具有足够大的初始刚度及较小的水平变形刚度,能够抵抗风荷载和轻微地震,且耐久性好,使用寿命长,因此,主要适用于较重要的如学校、医院、商场、科研机构及重要的指挥职能单位的低层和多层建筑。
2、消能减震技术。消能减震技术主要用于高层或超高层建筑,其原理是指在建筑结构的某些部位,如节点、剪力墙、支撑、连接件或连接缝等,设置消能元件,通过消能装置产生摩擦非线性滞回变形耗能来耗散或吸收地震能量以减小主体结构的水平和竖向地震反应,从而避免结构产生破坏或倒塌,以达到减震抗震的目的。虽然隔震技术和消能减震技术能够大幅度提高建筑结构的抗震性能,但因为施工较复杂,很难合理把握,因此,在实际运用中,还需要更加合理的设计及科学的施工,以保证房屋建筑具备优质的抗震性能。
六、高层建筑抗震设计中短柱的处理
在层高一定的情况下,为提高延性而降低轴压比则会导致柱截面增大,且轴压比越小截面越大;而截面增大导致剪跨比减小,又降低了构件的延性。因此,在高层特别是超高层建筑结构设计中,为满足对轴压比限值的要求,柱子的截面往往比较大,在结构底部常常形成短柱甚至超短柱。另外,诸如图书馆的书库、层高较低的储藏室、高层建筑的地下车库等由于使用荷载大,层高较低,在设计中也不可避免地会出现短柱。众所周知,短柱的延性很差,尤其是超短柱几乎没有延性,在建筑遭受本地区设防烈度或高于本地区设防烈度的地震影响时,很容易发生剪切破坏而造成结构破坏甚至倒塌,无法满足“小震不坏,中震可修,大震不倒”的设计准则。为了避免短柱脆性破坏问题在高层建筑中发生,要对短柱采取一些构造措施或处理,提高短柱的延性和抗震性能。改善短柱抗震性能的措施主要有以下几种:
1.使用复合螺旋箍筋提高抗剪承载力
高层建筑框架柱的抗剪能力是应该满足剪压比限值和“强剪弱弯”要求的,柱端的抗弯承载力也是应该满足“强柱弱梁”要求的。对于短柱,只要符合“强剪弱弯”和“强柱弱梁”的要求,是能够做到使其不发生剪切型破坏的。因此,使用复合螺旋箍筋来提高柱子的抗剪承载力,改善对混凝土的约束作用,能够达到改善短柱抗震性能的目的。
2.采用分体柱降低抗弯强度,实现先弯曲破坏后剪切破坏
由于短柱的抗弯承载力比抗剪承载力要大得多,在地震作用下往往是因剪坏而失效,其抗弯强度不能完全发挥。因此,可人为地削弱短柱的抗弯强度,使抗弯强度相应于或略低于抗剪强度,这样,在地震作用下,柱子将首先达到抗弯强度,从而呈现出延性的破坏状态。人为削弱抗弯强度的方法,可以在柱中沿竖向设缝将短柱分为2或4个柱肢组成的分体柱,分体柱的各柱肢分开配筋。在组成分体柱的柱肢之间可以设置一些连接键,以增强它的初期刚度和后期耗能能力。一般,连接键有通缝、预制分隔板、预应力摩擦阻尼器、素混凝土连接键等形式。对分体柱工作性态的理论分析和试验研究表明:采用分体柱的方法虽然使柱子的抗剪承载力基本不变,抗弯承载力稍有降低,但是使柱子的变形能力和延性均得到显著提高,其破坏形态由剪切型转化为弯曲型,从而实现了短柱变“长柱”的设想,有效地改善了短柱尤其是剪跨比λ≤1.5的超短柱的抗震性能。分体柱方法已在实际工程中得到应用。
3.采用钢骨混凝土柱提高承载力减小截面积
钢骨混凝土柱由钢骨和外包混凝土组成。钢骨通常采用由钢板焊接拼制或直接扎制而成的工字形、口字形、十字形截面。与钢结构相比,钢骨混凝土柱的外包混凝土可以防止钢构件的局部屈曲,提高柱的整体刚度,显著改善钢构件出平面扭转屈曲性能,使钢材的强度得以充分发挥。采用钢骨混凝土结构,一般可比钢结构节约钢材达50%以上。此外,外包混凝土增加了结构的耐久性和耐火性。与钢筋混凝土结构相比,由于配置了钢骨,使柱子的承载力大大提高,从而有效地减小柱截面尺寸;钢骨翼缘与箍筋对混凝土有很好的约束作用,混凝土的延性得到提高,加上钢骨本身良好的塑性,使柱子具有良好的延性及耗能能力。由于钢骨混凝土柱充分发挥了钢与混凝土两种材料的特点,具有截面尺寸小,自重轻,延性好以及优越的技术经济指标等特点,如果在高层或超高层钢筋混凝土结构下部的若干层采用钢骨混凝土柱,可以大大减小柱的截面尺寸,显著改善结构的抗震性能。
4.采用钢管混凝土柱
钢管混凝土是由混凝土填入薄壁圆形钢管内而形成的组合结构材料,是套箍混凝土的一种特殊形式。由于钢管内的混凝土受到钢管的侧向约束,使得混凝土处于三向受压状态,从而使混凝土的抗压强度和极限压应变得到很大的提高,混凝土特别是高强混凝土的延性得到显著改善。同时,钢管既是纵筋,又是横向箍筋,其管径与管壁厚度的比值至少都在90以下,这相当于配筋率至少都在4.6%以上,这远远超过抗震规范对钢筋混凝土柱所要求的最小配筋率限值。由于钢管混凝土的抗压强度和变形能力特佳,即使在高轴压比条件下,仍可形成在受压区发展塑性变形的“压铰”,不存在受压区先破坏的问题,也不存在像钢柱那样的受压翼缘屈曲失稳的问题。因此,从保证控制截面的转动能力而言,无需限定轴压比限值。
七、结语:
地震的危害性非常大,不仅会造成巨大的人员伤亡,也会带来严重的财产损失。目前,城市的高层、超高层建筑越来越多,相关安全性问题也备受关注。这就使得建筑物的抗震性能显得尤为重要。
参考文献:
《建筑抗震设计规范》GB50011-2010
《混凝土结构设计规范》GB 50010-2010
《高层建筑混凝土结构技术规程》JGJ 3—2010
《混凝土结构》中国建筑工业出版社 程文瀼
作者简介:
姓名:秦人欣性别:女民族:汉族 籍贯:海南 学历:工学学士 专业:建筑工程 职务:助理工程师