初中数学教学中数学思想方法的渗透

2012-04-29 12:48任启利
都市家教·上半月 2012年6期
关键词:反证法数学方法新课标

任启利

数学思想和方法是数学知识的精髓,又是知识转化为能力的桥梁。新课程把数学思想、方法作为基础知识的重要组成部分,在数学《新课程标准》中明确提出来,这不仅是课标体现义务教育性质的重要表现,也是对学生实施创新教育、培训创新思维的重要保证。

一、 了解《数学新课标》要求,把握教学方法

1.新课标要求,渗透“层次”教学

《数学新课标》对初中数学中渗透的数学思想、方法划分为三个层次,即“了解”、“理解”和“会应用”。在教学中,要求学生“了解”数学思想有:数形结合的思想、分类的思想、化归的思想、类比的思想和函数的思想等。这里需要说明的是,有些数学思想在《数学新课标》中并没有明确提出来,比如:化归思想是渗透在学习新知识和运用新知识解决问题的过程中的,方程(组)的解法中,就贯穿了由“一般化”向“特殊化”转化的思想方法。

教师在整个教学过程中,不仅应该使学生能够领悟到这些数学思想的应用,而且要激发学生学习数学思想的好奇心和求知欲,通过独立思考,不断追求新知,发现、提出、分析并创造性地解决问题。在《数学新课标》中要求“了解”的方法有:分类法、类比法、反证法等。要求“理解”的或“会应用”的方法有:待定系数法、消元法、降次法、配方法、换元法、图象法等。在教学中,要认真把握好“了解”、“理解”、“会应用”这三个层次。不能随意将“了解”的层次提高到“理解”的层次,把“理解”的层次提高到“会应用”的层次,不然的话,学生初次接触就会感到数学思想、方法抽象难懂,高深莫测,从而导致他们失去信心。如初中数学三年级上册中明确提出“反证法”的教学思想,且揭示了运用“反证法”的一般步骤,但《数学新课标》只是把“反证法”定位在通过实例,“体会”反证法的含义的层次上,我们在教学中,应牢牢地把握住这个“度”,千万不能随意拔高、加深。否则,教学效果将是得不偿失。

2.从“方法”了解“思想”,用“思想”指导“方法”

关于初中数学中的数学思想和方法内涵与外延,目前尚无公认的定义。其实,在初中数学中,许多数学思想和方法是一致的,两者之间很难分割。它们既相辅相成,又相互蕴含。只是方法较具体,是实施有关思想的技术手段,而思想是属于数学观念一类的东西,比较抽象。因此,在初中数学教学中,加强学生对数学方法的理解和应用,以达到对数学思想的了解,使数学思想与方法得到交融的有效方法。同时,数学思想的指导,又深化了数学方法的运用。这样处置,使“方法”与“思想”珠联璧合,将创新思维和创新精神寓于教学之中,教学才能卓有成效。

二、遵循认识规律,把握教学原则,实施创新教育

1.渗透“方法”,了解“思想”

由于初中学生数学知识比较贫乏,抽象思维能力也较为薄弱,把数学思想、方法作为一门独立的课程还缺乏应有的基础。因而只能将数学知识作为载体,把数学思想和方法的教学渗透到数学知识的教学中。教师要把握好渗透的契机,重视数学概念、公式、定理、法则的提出过程,知识的形成、发展过程,解决问题和规律的概括过程,使学生在这些过程中展开思维,从而发展他们的科学精神和创新意识,形成获取、发展新知识,运用新知识解决问题。在渗透数学思想、方法的过程中,教师要精心设计、有机结合,要有意识地潜移默化地启发学生领悟蕴含于数学之中的种种数学思想方法,切忌生搬硬套,和盘托出,脱离实际等错误做法。

2.训练“方法”,理解“思想”

数学思想的内容是相当丰富的,方法也有难有易。因此,必须分层次地进行渗透和教学。这就需要教师全面地熟悉初中三个年级的教材,钻研教材,努力挖掘教材中进行数学思想、方法渗透的各种因素,对这些知识从思想方法的角度作认真分析,按照初中三个年级不同的年龄特征、知识掌握的程度、认知能力、理解能力和可接受性能力由浅入深,由易到难分层次地贯彻数学思想、方法的教学。如在教学同底数幂的乘法时,引导学生先研究底数、指数为具体数的同底数幂的运算方法和运算结果,从而归纳出一般方法,在得出用a表示底数,用m、n表示指数的一般法则以后,再要求学生应用一般法则来指导具体的运算。在整个教学中,教师分层次地渗透了归纳和演绎的数学方法,对学生养成良好的思维习惯起重要作用。

3.掌握“方法”,运用“思想”

数学知识的学习要经过听讲、复习、做习题等才能掌握和巩固。数学思想、方法的形成同样有一 个循序渐进的过程。只有经过反复训练才能使学生真正领会。另外,使学生形成自觉运用数学思想方法的意识,必须建立起学生自我的“数学思想方法系统”,这更需要一个反复训练、不断完善的过程。比如 ,运用类比的数学方法,在新概念提出、新知识点的讲授过程中,可以使学生易于理解和掌握。学习一次函数的时候,我们可以用乘法公式类比;在学习二次函数有关性质时,我们可以和一元二次方程的根与系数性质类比。通过多次重复性的演示,使学生真正理解、掌握类比的数学方法。

教学中那种只重视讲授表层知识,而不注重渗透数学思想、方法的教学,是不完备的教学,它不利于学生对所学知识的真正理解和掌握,使学生的知识水平永远停留在一个初级阶段,难以提高;反之,如果单纯强调数学思想和方法,而忽略表层知识的教学,就会使教学流于形式,成为无源水,无本之木,学生也难以领略深层知识的真谛。因此数学思想的教学应与整个表层知识的讲授融为一体。只要我们执教者课前精心设计,课上精心组织,充分发挥学生的主体作用,多创设情景,多提供机会,坚持不懈,就能达到我们的教学育人目标。

猜你喜欢
反证法数学方法新课标
反证法在平面几何中的一些应用
欢迎订阅4-6年级《新课标 分级阅读》
体现新课标 用好新教材
欢迎订阅4-6级《新课标 分级阅读》
数学方法在化学平衡学习中的重要应用
反证法与高次费马大定理
浅析数学方法在金融学中的应用
巧用反证法证题
月牙肋岔管展开图的数学方法解析
点击反证法