何璇,梁华,邵一鸣
中国疾病预防控制中心性病艾滋病预防控制中心,北京 102206
自1981年确认首例艾滋病患者以来,艾滋病已迅速扩散至世界范围,成为威胁人类健康的重大传染病之一。抗病毒感染的第1道防线——天然免疫已日趋成为研究热点。γδ T 细胞作为天然免疫的重要组分,在抗人类免疫缺陷病毒(human immunodeficiency virus,HIV)的天然免疫甚至获得性免疫中发挥了重要作用。
T细胞依据T细胞受体 (T cell receptor,TCR)的不同,分为αβ T细胞和γδ T细胞。与αβ T细胞不同,γδ T细胞不表达CD4和CD8,无需主要组织相容性复合物(major histocompatibility complex,MHC)限制即可直接识别抗原而发挥作用。γδ T 细胞主要分2个亚群:Vδ1亚群,集中分布于上皮组织中,可能参与呼吸道、肠道等黏膜免疫[1-4];Vδ2亚群,为外周血的主要γδ T细胞亚群,其中Vγ2Vδ2 亚型(也称Vγ9Vδ2)是主要循环细胞,占血液T细胞的1%~5%,在抗微生物感染和抗肿瘤免疫方面发挥作用。已有多项研究表明,γδ T细胞不但可以直接识别并杀伤靶细胞,参与早期抗HIV的天然免疫,而且其分泌的各类细胞因子及抗原呈递细胞(antigen-presenting cell, APC)有助于诱发获得性免疫反应[5]。
Vγ9Vδ2 T细胞表面的TCR能直接识别低相对分子质量的非肽抗原,而无需抗原呈递[6]。在HIV感染中,HIV复制能改变细胞代谢途径,从而增加并释放中间产物phosphometabolite (PM),使Vγ9Vδ2 T细胞持续激活。异戊烯焦磷酸单酯 (isopentenyl pyrophosphate,IPP) 是较常见的磷酸类抗原,为真核细胞中甲羟戊酸-胆固醇代谢途径的中间产物,识别病变细胞或感染细胞释放的危险信号[7],常用作Vγ9Vδ2 T细胞体外功能检测的刺激剂。此外,体外实验中Vγ9Vδ2 T细胞还能被一些非磷酸类物质激活,如烷基胺(alkylamine)、Ecto-F1-ATP合成酶(Ecto-F1-ATPase)[8]等。另外,有研究表明,Vγ9Vδ2 T细胞还能识别热休克蛋白(heat shock protein,HSP)家族中的成员,这些蛋白可能是病变细胞或感染细胞过度表达的产物[1,9]。
除通过TCR识别非肽抗原外,γδ T细胞表面其他分子也参与γδ T细胞的激活,这类分子称为“共刺激分子”(co-receptor)。包括4类:黏附配体(adhesion partner molecule)、Toll样受体(Toll-like receptor,TLR)、天然杀伤受体(natural killer receptor,NKR)及Fc受体。黏附配体包括淋巴细胞功能相关抗原1(lymphocyte function-associated antigen 1,LFA-1)、胞内黏附分子﹝如细胞间黏附分子1(intercellular adhesion molecule 1,ICAM-1)、CD2/LFA-3等﹞[10,11]。TLR属模式分子识别受体(pattern recognition receptor,PRR)家族成员,可广泛识别病原体相关分子模式(pathogen-associated molecular pattern,PAMP)而参与γδ T细胞激活。如TLR3可使已被TCR激活的Vγ9Vδ2 T细胞上调一些基因,表达与细胞毒作用相关的蛋白[12,13]。大多数γδ T细胞,尤其是具细胞毒功能的Vγ9Vδ2 T细胞中有表达活化NKR(activating NKR,aNKR)和抑制NKR(inhibitory NKR,iNKR)的作用。这2种受体之间的平衡作用直接影响γδ T细胞功能。aNKR+γδ T细胞能识别MHCⅠ类缺陷细胞,如K562和Daudi细胞系,而发挥细胞杀伤效应,其杀伤机制称为“missing self”假说[14]。γδ T细胞中iNKR具有抑制受体的功能,与各种人类白细胞抗原(human leukocyte antigen,HLA)Ⅰ类分子结合后,启动杀伤细胞阻止信号,从而参与控制TCR介导的对保守自身抗原和外源性配体的免疫反应[15]。此外,NKR还协助Vδ2 T细胞穿越内皮细胞层[16]。与NK细胞一样,Vγ9Vδ2 T细胞也能表达FcγRⅢ(CD16),且CD16的表达与Vγ9Vδ2 T细胞的效应细胞分化相关[17],并直接介导Vγ9Vδ2 T细胞发挥抗体依赖细胞介导的细胞毒性(antibody-dependent cell-mediated cytotoxicity,ADCC)作用。
γδ T细胞亚群根据表达的TCR不同,有不同的分布和功能。存在于外周血中的Vδ2 T细胞具细胞毒作用,能产生大量γ干扰素(interferon γ,IFN-γ)和肿瘤坏死因子α(tumor necrosis factor α,TNF-α);而存在于组织中的Vδ1 T细胞细胞毒作用较小,主要产生各种细胞因子,包括白细胞介素4(interleukin 4,IL-4)和IL-17[18,19]。当受抗原刺激时,γδ T细胞的2个细胞群表达与各自功能相关的趋化受体,可转移到胞外组织的炎症部位,发挥抗感染作用。激活后的γδ T细胞表达CC趋化因子受体7(chemokine CC motif receptor 7,CCR7),迁移到淋巴结,发挥抗HIV感染作用[20]。黏膜 Vγ9Vδ2 T细胞可在抗HIV感染早期发挥一定作用。恒河猴口腔注射猴免疫缺陷病毒(simian immunodeficiency virus,SIV)后,在较短时间内便可观察到随淋巴结归巢受体表达增加黏膜γδ T细胞显著增加[21]。
HIV感染期间,Vγ9Vδ2 T细胞通过非特异地识别HIV,直接或间接发挥抗病毒功能。活化后的Vγ9Vδ2 T细胞能分泌Th1类细胞因子,包括TNF-α、 IFN-γ。体外实验中,经IPP刺激的Vγ9Vδ2 T细胞在4~12 h便可产生巨噬细胞炎性蛋白1α(macrophage inflammatory protein 1α,MIP-1α)、MIP-1β和淋巴细胞趋化因子(lymphotactin)[22]。同时,Vγ9Vδ2 T细胞还能表达多种β类趋化因子受体,包括CCR1、CCR5和CCR8[23]。另外,它们同NK细胞一样,在“missing self”机制下,通过分泌穿孔素、颗粒酶或Fas/FasL凋亡途径发挥细胞毒作用,直接杀伤HIV感染细胞[24-26]。在灵长类动物实验中,受IL-2刺激扩增后的γδ T细胞能直接溶解SIV感染的靶细胞,杀伤机制与NK细胞相似[27]。这与Vγ9Vδ2 T细胞表达NK细胞类似受体有关。其次,激活的Vγ9Vδ2 T细胞能通过与HIV竞争CCR5共刺激分子或释放抗病毒因子而阻止HIV复制[28,29]。在SIV黏膜感染恒河猴体内发现黏膜部位的γδ T细胞也具有类似功能[30]。除直接杀伤外,Vγ9Vδ2 T细胞可通过CD16行使ADCC作用。Poonia等发现在HIV感染精英控制者中,表达CD16的Vγ9Vδ2 T细胞群被高度激活。体外实验证实,这些细胞可能通过ADCC作用杀伤被Env包被的靶细胞[31]。
除自身活化后发挥直接抗病毒感染免疫应答外,γδ T细胞还能协助其他细胞激活和趋化。HIV感染后,激活的Vγ9Vδ2 T细胞产生大量前炎症细胞因子和趋化因子,可协助中性粒细胞、巨噬细胞以及T细胞募集[32,33]。与Th17相似,Vγ9Vδ2 T细胞可通过释放单核细胞趋化蛋白2(monocyte chemoattractant protein 2,MCP-2)激活中性粒细胞,在HIV感染早期对防止胃肠黏膜中病毒扩散发挥重要作用[34]。另外,激活的Vγ9VδT细胞能诱导树突细胞成熟和活化,表明Vγ9Vδ2 T细胞可能具有佐剂作用,可增强抗原特异性αβ T细胞反应[35,36]。Vγ9Vδ2 T细胞与单核细胞相互作用能激活Th17,使中性粒细胞激活,并转移到炎症部位后发生反应[37]。以上研究表明,Vγ9Vδ2 T细胞与其他免疫细胞相互作用,直接参与早期抗微生物感染的免疫应答。γδ T细胞也具有一定的免疫调节作用。HIV感染者血清中新嘌呤和β2微球蛋白含量增加,与肠上皮淋巴细胞中大量存在的γδ T细胞呈负相关,表明肠上皮γδ T细胞具有限制非特异性免疫过度反应的能力[38]。
抗原刺激后的Vγ9Vδ2 T细胞具有APC功能,能上调MHCⅠ类和Ⅱ类分子表达。另外,共刺激分子CD40、CD83的表达增加也表明,γδ T细胞具有吞噬细胞、呈递抗原以及激活αβ T细胞的能力[39,40]。上述研究结果均为体外研究,γδ T细胞在体内如何行使APC功能还有待进一步研究。
多项研究结果表明,Vγ9Vδ2 T细胞与HIV感染疾病进展有直接关系。与正常人相比,HIV感染者外周血中Vδ2 T细胞/Vδ1 T细胞比例明显倒置[41],原因包括Vδ2 T细胞丢失和外周血中Vδ1 T细胞增加。有证据表明,Vγ9Vδ2 T细胞的丢失与病毒载量相关:性传播途径感染的HIV感染者,随着HIV载量反弹,循环Vγ9Vδ2 T细胞丢失加重[42]。Li等通过研究146例血液污染事件中的HIV感染者,发现Vγ9Vδ2 T细胞数量与病毒载量呈显著负相关,与CD4 T细胞数呈正相关[43]。该研究随访人群数量多,HIV感染时间和亚型基本一致,更加明确证实了Vγ9Vδ2 T 细胞数量减少与慢性HIV感染者的疾病进展紧密相关。而Vδ1 T细胞扩增与病毒载量升高呈正相关,并可能通过HIV消耗CD4+T细胞[44]。在HIV感染者血清中发现,HIV Tat蛋白能干扰IFN-γ诱导蛋白10(IFN-γ-inducible protein 10,IP-10)/CXCL10、6Ckine/SLC/CCL21等的趋化活性[45],这很可能是γδ T细胞2个亚群在HIV感染者中分布发生变化的原因。另一研究结果也证实,Vδ1 T细胞数增加可能并不是针对HIV感染克隆扩增的结果,而是受趋化因子的影响,Vδ1 T细胞从各种组织中渗透到外周血中[34]。Vγ9Vδ2 T细胞丢失则可能是由于HIV入侵后,诱导细胞表面Fas表达增高,与Vγ9Vδ2 T细胞表面的FasL相互作用,使Vγ9Vδ2 T 细胞凋亡[46]。有趣的是,Riedel等发现HIV精英控制者能较好地维持Vδ2 T细胞数目,其Vδ2 T细胞数目甚至高于健康人[47],再次证实Vγ9Vδ2 T细胞在控制HIV感染方面起重要作用。
以上研究结果均显示,HIV复制直接影响Vγ9Vδ2 T细胞内环境的稳定。Vγ9Vδ2 T细胞在HIV复制期激活,当病毒血症无法控制时迅速丢失,在艾滋病进展期以及HIV病毒血症患者中丢失更为严重。由于HIV感染对γδ T细胞亚群有如此大的影响,且丢失细胞主要是Vδ2 T细胞亚群(包含大多数功能性细胞,即针对磷酸化抗原起反应的γδ T细胞[48]),提示该途径可能是HIV在感染初期逃逸免疫系统的策略之一:降低功能性细胞群数量,从而逐步瓦解免疫系统。
除了数量和分布,HIV感染还影响γδ T细胞功能。HIV感染者体内存留的Vγ9Vδ2 T细胞在TCR刺激后无法扩增,也无功能性反应,如IFN-γ、TNF-α的分泌或IL-2受体的表达[49,50]。在HIV感染不同阶段,通过检测HLA-D相关表达,发现CD4+T细胞数与Vγ9Vδ2 T细胞激活呈负相关[51]。HIV感染早期引起大量细胞因子如IL-15、IFN-α、TNF-α释放[52],这些前炎症因子导致CD3ζ表达下降,这可能是γδ T细胞无功能的原因[53]。这种无功能反应也是HIV逃逸免疫系统的策略之一,可直接造成γδ T细胞功能不可逆性的损伤。由于猴体中Vγ9Vδ2 T细胞与人体相近,类似现象在SIV感染恒河猴体内也有发现[54,55]。
近几年来,研究学者逐渐意识到γδ T细胞在免疫临床应用中的重要作用。正如前文所说,γδ T细胞能直接识别低相对分子质量的非肽抗原,故可利用非肽抗原激活γδ T细胞,使其发挥抗病毒感染效应。前文已经提到HIV感染直接影响Vγ9Vδ2 T细胞,使其数量下降,功能受损。有研究指出,接受高效抗反转录病毒治疗(highly active antiretroviral therapy,HAART)后,尤其是HIV感染者体内病毒血症得到控制时,无论Vδ2 T细胞/Vδ1 T细胞比例还是Vγ9Vδ2 T细胞功能都显著恢复[56,57],表明γδ T细胞与抗病毒治疗中病毒血症的控制有关。如果能在HIV感染者体内注入非肽抗原协助Vγ9Vδ2 T细胞扩增和激活,或直接将Vγ9Vδ2 T细胞回输体内,可能是治疗HIV感染的有效方案。
控制HIV感染最有效的途径是研制出有效的HIV疫苗。然而经过20多年研究,依然无有效的HIV疫苗上市。现今,除了研究如何使用疫苗诱导获得性免疫反应外,如何协调宿主天然免疫和获得性免疫联合对抗HIV感染成为一个重要方向。有研究人员指出,Vγ9Vδ2 T细胞可能与淋巴压力监测系统相关[58],它们是已激活但处于静止状态的循环淋巴细胞群,无需抗原呈递过程便能快速而有效地对危险信号进行识别,正是连接天然免疫和获得性免疫的重要枢纽。在近期猴体实验中,SIVgp120免疫后的恒河猴针对SIV黏膜途径攻毒产生保护,其中黏膜γδ T 细胞比例有所增加,且γδ T 细胞能产生抗病毒因子,如调节激活正常T细胞表达和分泌因子(regulated upon activation, normal T cell expressed and secreted,RANTES)、MIP-1α 和MIP-1β[29]。因此,将γδ T细胞纳入免疫激活策略,将为HIV疫苗的研制提供更多新的线索。
综上所述,天然免疫成员γδ T细胞在抗HIV感染中起重要作用。本实验室前期研究发现,在HIV慢性感染期,Vγ9Vδ2 T细胞与疾病进展极其相关[44]。然而,依然存在很多问题有待解决:在HIV感染早期,γδ T细胞开始丢失的时间和丢失机制;如何增强γδ T细胞抗HIV感染作用,即加强对HIV感染细胞的杀伤能力,使HIV扩散在感染早期得以控制。对γδ T细胞作用机制的深入研究必将促进对HIV感染与宿主免疫系统之间相互作用的了解,进而为抗HIV感染药物、抗病毒免疫制剂以及HIV疫苗的研究提供科学依据和研究方向。
[1] Kaufmann SH. Gamma/delta and other unconventional T lymphocytes: what do they see and what do they do [J]? Proc Natl Acad Sci USA, 1996, 93(6): 2272-2279.
[2] Porcelli SA, Morita CT, Modlin RL. T-cell recognition of non-peptide antigens [J]. Curr Opin Immunol, 1996,8(4):510-516.
[3] Das H, Groh V, Kuijl C, Sugita M, Morita CT, Spies T, Bukowski JF. MICA engagement by human Vgamma2Vdelta2 T cells enhances their antigen-dependent effector function [J]. Immunity, 2001, 15(1): 83-93.
[4] Kabelitz D, Wesch D. Features and functions of gamma delta T lymphocytes: focus on chemokines and their receptors [J]. Crit Rev Immunol, 2003, 23(5-6): 339-370.
[5] Brandes M, Willimann K, Moser B. Professional antigen-presentation function by humam gamma delta T cells [J]. Science, 2005, 309(5732):264-268.
[6] De Libero G. Sentinel function of broadly reactive human gamma delta T cells [J]. Immunol Today, 1997, 18(1): 22-26.
[7] Gober H, Kistowska M, Angman L, Jenö P, Mori L, De Libero G. Human T cell receptor gamma delta cells recognize endogenous mevalonate metabolites in tumor cell [J]. J Exp Med, 2003, 197(2): 163-168.
[8] Vantourout P, Martinez LO, Fabre A, Collet X, Champagne E. Ecto-F1-ATPase and MHC-class I close association on cell membranes [J]. Mol Immunol, 2008, 45(2): 485-492.
[9] Kaufmann SH, Kabelitz D. Gamma/delta T lymphocytes and heat shock proteins [J]. Curr Top Microbiol Immunol, 1991, 167: 191-207.
[10] Kato Y, Tanaka Y, Tanaka H, Yamashita S, Minato N. Requirement of specific interactions for the activation of human gamma delta T cells by pamidronate [J]. J Immunol, 2003, 170(7): 3608-3613.
[11] Wang P, Malkovsky M. Different roles of the CD2 and LFA-1 T-cell co-receptors for regulating cytotoxic, proliferative, and cytokine responses of human Vgamma9/Vdelta2 T cells [J]. Mol Med, 2000, 6(3): 196-207.
[12] Beetz S, Wesch D, Marischen L, Welte S, Oberg HH, Kabelitz D. Innate immune functions of human gamma delta T cells [J]. Immunobiology, 2008, 213(3-4): 173-182.
[13] Pietschmann K, Beetz S, Welte S, Martens I, Gruen J, Oberg HH, Wesch D, Kabelitz D. Toll-like receptor expression and function in subsets of human gamma delta T lymphocytes [J]. Scand J Immunol, 2009, 70(3): 245-255.
[14] Moretta A, Bottino C, Vitale M, Pende D, Biassoni R, Mingari MC, Moretta L. Receptors for HLA class-I molecules in human natural killer cells [J].Annu Rev Immunol, 1996, 14: 619-648.
[15] Poccia F, Gougeon ML, Bonneville M, López-Botet M, Moretta A, Battistini L, Wallace M, Colizzi J, Malkovsky M. Innate T-cell immunity to nonpeptidic antigens [J]. Immunol Today, 1998, 19(6): 253-256.
[16] Poggi A, Zocchi MR, Costa P, Ferrero E, Borsellino G, Placido R, Galgani S, Salvetti M, Gasperini C, Ristori G, Brosnan CF, Battistini L. IL-12-mediated NKRP1A up-regulation and consequent enhancement of endothelial transmigration of Vdelta2+TCR gamma delta+T lymphocytes from healthy donors and multiple sclerosis patients [J]. J Immunol, 1999, 162(7): 4349-4354.
[17] Angelini DF, Borsellino G, Poupot M, Diamantini A, Poupot R, Bernardi G, Poccia F, Fournié JJ, Battistini L. FcgammaRIII discriminates between 2 subsets of Vgamma9Vdelta2 effector cells with different responses and activation pathways [J]. Blood, 2004, 104(6): 1801-1807.
[18] Morita CT, Verma S, Aparicio P, Martinez C, Spits H, Brenner MB. Functionally distinct subsets of human gamma/delta T cells [J]. Eur J Immunol, 1991, 21(12): 2999-3007.
[19] Fenoglio D, Poggi A, Catellani S, Battaglia F, Ferrera A, Setti M, Murdaca G, Zocchi MR. Vdelta1 T lymphocytes producing IFN-gamma and IL-17 are expanded in HIV-1-infected patients and respond to Candida albicans.[J]. Blood, 2009, 113(26): 6611-6618.
[20] Brandes M, Willimann K, Lang AB, Nam KH, Jin C, Brenner MB, Morita CT, Moser B. Flexible migration program regulates gamma delta T-cell involvement in humoral immunity [J]. Blood, 2003,102(10): 3693-3701.
[21] Kosub DA, Durudas A, Lehrman G, Milush JM, Cano CA, Jain MK, Sodora DL. Gamma/delta T mRNA levels decrease at mucosal sites and increase at lymphoid sites following an oral SIV infection of macaques [J]. Curr HIV Res, 2008, 6(6): 520-530.
[22] Poccia F, Gougeon ML, Agrati C, Montesano C, Martini F, Pauza CD, Fisch P, Wallace M, Malkovsky M. Innate T-cell immunity in HIV infection: the role of Vgamma9Vdelta2 T lymphocytes[J]. Curr Mol Med, 2002, 2(8): 769-781.
[23] Agrati C, D’Offizi G, Gougeon ML, Malkovsky M, Sacchi A, Casetti R, Bordoni V, Cimini E, Martini F. Innate gamma/delta T-cells during HIV infection: Terra relatively Incognita in novel vaccination strategies [J]? AIDS Rev, 2011, 13(1): 3-12.
[24] Poccia F, Cipriani B, Vendetti S, Colizzi V, Poquet Y, Battistini L, López-Botet M, Fournié JJ, Gougeon ML. CD94/NKG2 inhibitory receptor complex modulates both anti-viral and anti-tumoral responses of polyclonal phosphoantigen-reactive Vgamma9Vdelta2 T lymphocytes [J]. J Immunol, 1997, 159(12): 6009-6017.
[25] Halary F, Peyrat MA, Chamagne E, López-Botet M, Moretta A, Moretta L, Vié H, Fournié JJ, Bonneville M. Control of self-reactive cytotoxic T lymphocytes expressing gamma delta T cell receptors by natural killer inhibitory receptors [J]. Eur J Immunol, 1997, 27(11):2812-2821.
[26] Bakker AB, Phillips JH, Figdor CG, Lanier LL. Killer cell inhibitory receptors for MHC class I molecules regulate lysis of melanoma cells mediated by NK cells, gamma delta T cells, and antigen-specific CTL [J]. J Immunol, 1998, 160(11): 5239-5245.
[27] Wallace M, Gan YH, Pauza CD, Malkovsky M. Antiviral activity of primate gamma delta T lymphocytes isolated by magnetic cell sorting [J]. J Med Primatol, 1994, 23(2-3): 131-135.
[28] Poccia F, Battistini L, Cipriani B, Mancino G, Martini F, Gougeon ML, Colizzi V. Phosphoantigen-reactive Vgamma9Vdelta2 T lymphocytes suppress in vitro human immunodeficiency virus type 1 replication by cell-released antiviral factors including CC chemokines [J]. J Infect Dis, 1999, 180(3): 858-861.
[29] Biswas P, Ferrarini M, Mantelli B, Fortis C, Poli G, Lazzarin A, Manfredi AA. Double-edged effect of Vgamma9/Vdelta2 T lymphocytes on viral expression in an in vitro model of HIV-1/mycobacteria co-infection [J]. Eur J Immunol, 2003, 3(1): 252-263.
[30] Lehner T, Mitchell E, Bergmeier L, Singh M, Spallek R, Cranage M, Hall G, Dennis M, Villinger F, Wang Y. The role of gamma delta T cells in generating antiviral factors and beta-chemokines in protection against mucosal simian immunodeficiency virus infection [J]. Eur J Immunol, 2000, 30(8): 2245-2256.
[31] Poonia B, Riedel D, Cairo C, Sajadi M, Armstrong C, Pauza D. γδ T cells are ADCC effectors in elite HIV controllers [R/OL]. http://www.retrovirology.com/content/7/S1/O7.
[32] Bosimenu R, Feng L, Xia YY, Chang JC, Havran WL. Chemokine expression by intraepithelial gamma delta T cells. Implications for the recruitment of inflammatory cells to damaged epithelia [J]. J Immunol, 1996, 157(3): 985-992.
[33] MacKay CR. Chemokines: immunology’s high impact factors [J]. Nat Immunol, 2001, 2(2):95-101.
[34] Agrati C, Cimini E, Sacchi A, Bordoni V, Gioia C, Casetti R, Turchi F, Tripodi M, Martini F. Activated Vgamma9Vdelta2 T cells trigger granulocyte functions via MCP-2 release [J]. J Immunol, 2009, 182(1): 522-529.
[35] Martino A, Poccia F. Gamma delta T cells and dendritic cells: close partner and biological adjuvants for new therapies [J]. Curr Mol Med, 2007, 7(7): 658-673.
[36] Conti L, Casetti R, Cardone M, Varano B, Martino A, Belardelli F, Poccia F, Gessani S. Reciprocal activating interaction between dendritic cells and pamidronate-stimulated gamma delta T cells: role of CD86 and inflammatory cytokines [J]. J Immunol, 2005, 174(1): 252-260.
[37] Eberl M, Roberts GW, Meuter S, Williams JD, Topley N, Moser B. A rapid crosstalk of human gamma delta T cells and monocytes drives the acute inflammation in bacterial infections [J]. PLoS Pathog, 2009, 5(2): e1000308.
[38] Nilssen D, Muller F, Oktedalen O, Frøland SS, Fausa O, Halstensen TS, Brandtzaeg P. Intraepithelial gamma/delta T cells in duodenal mucosa are related to the immune state and survival time in AIDS [J]. J Virol, 1996, 70(6): 3545-3550.
[39] Brandes M, Willimann K, Bioley G, Lévy N, Eberl M, Luo M, Tampé R, Lévy F, Romero P, Moser B. Cross-presenting human gamma delta T cells induce robust CD8+alpha beta T cell responses [J]. Proc Natl Acad Sci USA, 2009, 106(7): 2307-2312.
[40] Wu Y, Wu W, Wong WM, Ward E, Thrasher AJ, Goldblatt D, Osman M, Digardz P, Canaday DH, Gustafsson K. Human gamma delta T cells: a lymphoid lineage capable of professional phagocytosis [J]. J Immunol, 2009, 183(9), 5622-5629.
[41] Autran B, Triebel F, Katlama C, Rozenbaum W, Hercend T, Debre P. T cell receptor gamma/delta+lymphocyte subsets during HIV infection [J]. Clin Exp Immunol, 1989, 75(2): 206-210.
[42] Martini F, Poccia F, Goletti D, Carrara S, Vincenti D, D’Offizi G, Agrati C, Ippolito G, Colizzi V, Pucillo LP, Montesano C. Acute human immunodeficiency virus replication causes a rapid and persistent impairment of Vgamma9Vdelta2 T cells in chronically infected patients undergoing structured treatment interruption [J]. J Infect Dis, 2002, 186(6): 847-850.
[43] Li H, Peng H, Ma P, Ruan Y, Su B, Ding X, Xu C, Pauza CD, Shao Y. Association between Vgamma2Vdelta2 T cells and disease progression after infection with closely-related strains of HIV-1 in China [J]. Clin Infect Dis, 2008, 46(9): 1466-1472.
[44] Sindhu ST, Ahmad R, Morisset R, Ahmad A, Menezes J. Peripheral blood cytotoxic gamma delta T lymphocytes from patients with human immunodeficiency virus type 1 and AIDS lyse uninfected CD4+T cells, and their cytocidal potential correlates with viral load [J]. J Virol, 2003, 77(3): 1848-1855.
[45] Poggi A, Carosio R, Fenoglio D, Brenci S, Murdaca G, Setti M, Indiveri F, Scabini S, Ferrero E, Zocchi MR. Migration of Vdelta1 and Vdelta2 T cells in response to CXCR3 and CXCR4 ligands in healthy donors and HIV-1-infected patients: competition by HIV-1 Tat [J]. Blood, 2004, 103(6): 2205-2213.
[46] Gan YH, Lui SS, Malkovsky M. Differential susceptibility of naive and activated human gamma delta T cells to activation-induced cell death by T-cell receptor cross-linking [J]. Mol Med, 2001, 7(9): 636-643.
[47] Riedel DJ, Sajadi MM, Armstrong CL, Cummings JS, Cairo C, Redfield RR, Pauza CD. Natural viral suppressors of HIV-1 have a unique capacity to maintain gamma delta T cells [J]. AIDS, 2009, 23(15): 1955-1964.
[48] Enders PJ, Yin C, Martini F, Evans PS, Propp N, Poccia F, Pauza CD. HIV-mediated gamma delta T cell depletion is specific for Vgamma2+cells expressing the Jgamma1.2 segment [J]. AIDS Res Hum Retroviruses, 2003, 19 (1): 21-29.
[49] Poccia F, Boullier S, Lecoeur H, Cochet M, Poquet Y, Colizzi V, Fournie JJ, Gougeon ML. Peripheral Vgamma9/Vdelta2 T cell deletion and anergy to nonpeptidic mycobacterial antigens in asymptomatic HIV-1-infected persons [J]. J Immunol, 1996, 157(1): 449-461.
[50] Montesano C, Gioia C, Martini F, Agrati C, Cairo C, Pucillo LP, Colizzi V, Poccia F. Antiviral activity and anergy of gamma delta T lymphocytes in cord blood and immuno-compromised host [J]. J Biol Regul Homeost Agents, 2001, 15(3): 257-264.
[51] Norazmi MN, Arifin H, Jamaruddin MA. Increased level of activated gamma delta lymphocytes correlates with disease severity in HIV infection [J]. Immunol Cell Biol, 1995, 73(3): 245-248.
[52] Stacey AR, Norris PJ, Qin L, Haygreen EA, Taylor E, Heitman J, Lebedeva M, DeCamp A, Li D, Grove D, Self SG, Borrow P. Induction of a striking systemic cytokine cascade prior to peak viremia in acute human immunodeficiency virus type 1 infection, in contrast to more modest and delayed responses in acute hepatitis B and C virus infections [J]. J Virol, 2009, 83(8): 3719-3733.
[53] Isomäki P, Panesar M, Annenkov A, Clark JM, Foxwell BM, Chernajovsky Y, Cope AP. Prolonged exposure of T cells to TNF down-regulates TCR zeta and expression of the TCR/CD3 complex at the cell surface [J]. J Immunol, 2001, 166(9): 5495-5507.
[54] Gan YH, Pauza CD, Malkovsky M. Gamma delta T cells in rhesus monkeys and their response to simian immunodeficiency virus(SIV) infection [J]. Clin Exp Immunol, 1995, 102(2): 251-255.
[55] Malkovsky M, Wallace M, Fournié JJ, Fisch P, Poccia F, Gougeon ML. Alternative cytotoxic effector mechanisms in infections with immunodeficiency viruses: gamma delta T lymphocytes and nature killer cells [J]. AIDS, 2000, 14(Suppl 3): S175- S186.
[56] Bordon J, Evans PS, Propp N, Davis CE Jr, Redfield RR, Pauza CD. Association between longer duration of HIV-suppressive therapy and partial recovery of the Vgamma2 T cell receptor repertoire [J]. J Infect Dis, 2004, 189(8): 1482-1486.
[57] Martini F, Urso R, Gioia C, De Felici A, Narciso P, Amendola A, Paglia MG, Colizzi V, Poccia F. Gamma delta T-cell anergy in human immunodeficiency virus-infected persons with opportunistic infections and recovery after highly active antiretroviral therapy [J]. Immunology, 2000, 100(4): 481-486.
[58] Hayday AC. Gamma delta T cells and the lymphoid stress-surveillance response [J]. Immunity, 2009, 31(2): 184-196.