邵光华, 王培合
(1.宁波大学教师教育学院,浙江宁波 315211; 2.曲阜师范大学数学科学学院,山东曲阜 273165)
高等院校数学专业解析几何课程改革研究
邵光华1, 王培合2
(1.宁波大学教师教育学院,浙江宁波 315211; 2.曲阜师范大学数学科学学院,山东曲阜 273165)
本文从高校几何学课程改革的一般现状、解析几何课程改革的必要性、课程内容改革和课程安排设想以及相关课程内容及设置时间的处理建议等角度对高等院校数学专业解析几何课程改革做了一定的探讨,并提出了解析几何教材改革的具体内容和结构安排设想.
课程改革;Klein几何观点;变换群;解析几何
高等院校数学专业课程设置中,几何学占有重要一块,尤其是师范院校,几何学被作为未来中学数学教师专业知识的重要组成部分.几何学主要包括解析几何、高等几何、微分几何、拓扑学等课程.课程教材多是二十年前的老教材.如吕林根、许子道的《解析几何》(高等教育出版社,1987年),朱鼎勋的《解析几何学》(北京师范大学出版社,1984年)等.新世纪以来,高等院校课程改革进入了一个新高潮,国家有关部门组织了面向二十一世纪课程改革及教材编写工作.许多新版本教材相继出版,其中,几何课程新教材有几本,如周建伟的《解析几何》(科学出版社,2005年),黄宣国的《解析几何和微分几何》(复旦大学出版社,2003年),陈志杰的《高等代数与解析几何》(高等教育出版社,2000年)等等.分析这些新教材,我们发现,仍有许多不尽人意的地方.如课程内容仍然陈旧,没有很好地考虑到中学数学学习内容,尤其是中学新课改之后的几何内容的变化;与高等代数课程整合的版本,淡化了几何思想的学习,等等.的确,在数学课程改革中,诚如我国著名数学家姜伯驹院士所说:“随着科学技术的发展,数学课程要不断改革,其中以几何课程的改革问题争议最多,难度最大,中学如此,大学也如此,中国如此,外国也如此.数学本是几何、代数、分析有机地结合的整体,人们往往看重代数的、分析的方法,而容易忽略几何的观念.其实,无论在数学史上,还是在当代数学中,数学思想的飞跃和突破常常与几何学联系在一起的.”所以,我们必须慎重地进行几何课程的改革.
课程的改革是一个系统工程,它不仅是课程内容的简单选取设定和教材的编写修订,同时它还涉及课程教学方面,课程改革同时指向教学改革,如教学方式的变革,教学手段的使用等,课程改革必须兼顾这些方面.但是,目前几何课程的改革很少涉及对教学方式或手段的改革.综观大学几何课堂,仍是传统的教学方式,缺少时代教学思想信息,不能很好地利用现代信息技术手段辅助教学.我们认为,一场好的课程改革,一套好的教材的编写,应能主导教师教学观念的转变、教学方式的变革和教学手段的革新.当然,就几何课程改革而言,改革的成败的评判标准最终取决于改革后的教学内容、课程体系、教学方法、教学手段、教学评价体系等能否能承担起高校数学专业几何课程的数学基本素质、基本能力和基本思想的培养责任.
鉴于当前几何课程改革的情况,本文试从未来基础教育数学课程改革状况及数学教师专业知识需求出发,对几何学课程系列中的基础课程——解析几何课程的改革做一探讨.
解析几何的基本思想是用代数的方法研究几何问题.近年来,在高校教育改革的浪潮中,解析几何课程从教学内容、课程体系、教材建设、教学方法和教学手段以及课程体系安排等多个方面也进行了一系列的改革,比如,有些改革从课程内容上尝试涵盖整个没有微积分的仿射几何、射影几何以及椭圆和双曲几何,扩展解析几何的内容,有些改革从整合角度,将传统解析几何和高等代数内容进行整合等等.随着教学改革的进一步深化,解析几何课程深入改革的内在必要性也越来越凸显,主要体现在以下几个方面:
1.新一轮中学数学课程改革导致高校解析几何课程内容的重复.
近年来,中学数学教育已经进行了卓有成效的课程改革,一系列相关的改革成果被应用到中学的数学教学中去,给我国的中学数学素质教育做出了积极的贡献.高等院校的数学专业,作为中学数学的进一步延伸和深化,随着中学数学课程改革的不断推进,有必要重新审视整个课程体系的设置,以便于整合课程资源,提高课程效率.从《普通高中数学课程标准》能够看到,现在中学数学课程已经比较深入地讲授了向量代数的基本内容,包括向量的线性运算、坐标表示、内积运算等有关向量代数的知识,以及向量在处理立体几何上的应用.这样,作为大学的基础课之一的解析几何,再详细的阐述这些向量的基本运算及应用就造成了课程设置的重复和资源浪费.虽然在大学解析几何中会明确地把向量置入线性空间和内积空间进行高观点之下的讨论,但这本质上应该归属于高等代数的理论范畴,不应该是解析几何课程要承担的角色.因此,高校解析几何课程内容应该精简,提高起点.
2.解析几何与高等代数课程的整合实践效果告诉我们解析几何课程应保持其独立性.
如前所述,解析几何课程的改革一直以来吸引着人们的兴趣.上世纪九十年代开始,国内诸多知名高校如清华大学、南开大学、华东师范大学等开始尝试将高等代数和解析几何有机地整合,借以消除向量空间在两门课程中重复讲授的弊端,并相继编著了多部高等代数和解析几何整合的统一教材,课程体系的安排也相应地做了些改变.这些改革的尝试现在看来应该算是不成功的.解析几何的基本思想和主要任务是用代数的方法研究几何,具体说来就是把高等代数中的空间理论、二次型理论以及线性变换的相关理论应用到几何对象上,借以研究几何固有的性质.但是,解析几何基本思想的内涵中还应该包括“代数工具的选取不能影响几何”.这就要求解析几何课程要承担两方面的角色,一是研究与代数工具选取无关的几何性质,另一方面就是如何选取最有效的代数工具使得几何性质的研究变得简单.解析几何的基本思想的内涵要求决定了它不是高等代数的附属品,不能仅仅作为高等代数的空间理论的一个具体应用夹入到其中作为一部分.另外,国内的诸多高等代数和解析几何的整合教材都或多或少地显现着机械拼凑的痕迹,甚至在有的教材里面,解析几何的相关内容都被作为高等代数的部分例题处理,这无疑使得解析几何课程思想的传授变得模糊甚至完全丧失.总体看来,高等代数和解析几何的整合没有先前预想的成功,课程性质和课程思想侧重点的不同也决定了这两门课的整合并不是解析几何课程改革的必由之路.整合带来的是淡化、降低了解析几何的核心思想的体现,把解析几何作为代数的应用领域或具体的一个实现模型了,失去了解析几何的“几何”本色.
3.解析几何课程的深化改革是改变《高等几何》课程的现状的内在需要.
传统的《高等几何》课程包含了仿射几何学和射影几何学的教学内容,现在也被看作是解析几何学的一个组成部分,其主要内容是讨论空间几何在仿射变换和射影变换之下的不变量并由此研究空间的几何.作为数学的重要基础课之一的高等几何现在却面临着在绝大部分高等院校被忽略的尴尬地位.尤其是在省属地方院校这一类学校层次上,现在基本上已经把《高等几何》课程从教学计划中删除.作为数学专业的主要组成部分的几何,只有经典的解析几何和微分几何是远远不够的,没有办法把空间几何的固有属性和几何学的基本思想完全渗透到数学教学中去.那么,基于这样的现实,我们有必要将原来属于高等几何学的部分内容拿到解析几何课程中来,重新组织解析几何内容,以保持高校数学专业整个几何课程的完整的体系,使学生获得必要的几何修养.
4.解析几何课程的深化改革是Klein几何观点在大学数学教育中的渗透的需要.
经典的解析几何主要内容包括向量代数、空间的点线面及相互位置关系、二次曲面以及二次曲线的分类理论.由于在课程讲授过程中一般采用特殊的笛卡尔坐标系,所以逐渐丧失了解析几何学的基本思想的合理渗透,甚至导致了“解析几何就是在为学习高等代数中的空间理论做准备以及帮助学习数学分析时画好空间图形”这一以偏概全的错误观点.向学生渗透课程思想是数学教学的主要任务之一.从数学教育的本质来讲,这甚至是数学教学的最根本的任务.一门课程的成功教学,必定伴随着学生对课程思想充分的理解和把握,反之,如果学生只是掌握了课程所列举的计算和逻辑推理技能,很难说这样的教学效果是合格的.在整个几何学课程体系教学过程中,Klein的几何学观点是最重要的学科思想之一.Klein强调几何学是探讨变换群下不变性的一门学科.在整个几何学的组成里面,经典的解析几何可以看作是在欧氏变换群之下保持不变的性质,高等几何中的仿射几何则是在仿射变换群之下保持不变的性质,射影几何则强调在射影变换群之下不变的性质.这三种几何构成了空间中没有微积分的几何学的主要内容,并组成一个完备的空间几何体系.通过对这个体系的完整学习,可以帮助学生深刻理解几何学的本质内涵和研究方法,进而掌握Klein的几何学观点.所以,有必要将它们整合在一门课程中.
总之,解析几何课程的改革需要深入进行.
1.转变解析几何课程观念.
首先转变传统解析几何课程观念,不应再把它看成只是辅助《数学分析》的工具或学习《数学分析》的基础,而应作为一门独立课程来看待,有自己的课程思想,应作为一门学问来研究,学习其核心概念和重要数学思想.应该把分析、代数、几何看成三门真正独立成体系的学科,“三权鼎立”构筑数学专业学生的数学基础,分别注重分析思想、代数思想、几何思想等的学习.
2.突出解析几何的几何本质.
目前,《空间解析几何》的基本内容多数仍是由“向量代数”、“直线和平面”、“二次曲面”等构成,学生接受这些内容困难不大,但学完后,对什么是几何仍没有弄明白,对于几何的客观存在性,“几何量”与坐标变换的无关性,几何图形变换(变换是现实世界处理问题的主要基础)的动态性质等等基本观念,缺乏理性的认识,而这些基本观念的建立,对于学习现代数学(如流形论)和现代物理(如广义相对论)都是至关重要的.因此,有必要将《解析几何》内容现代化,把变换群与几何学紧密的联系在一起,进一步加强同线性代数的内容和方法的联系,即不仅要体现线性代数作为解析几何的主要工具的作用,而且更要具体地给线性代数提供各种几何背景和几何解释,更系统地阅读解析几何四种最基本的方法:向量方法、坐标方法、坐标变换方法和点变换方法,发展几何空间概念,即在解析几何课程中既要讨论图形的欧氏性质,还要进一步讨论图形的仿射性质和射影性质.
3.充实解析几何课程内容.
解析几何的内容不能过于贫乏,不能仅局限于欧氏几何,课程内容必须能够扩大学生的几何视野,架起通向近代几何的桥梁,及时传达现代数学思想、数学方法和发展精神,使解析几何课程内容改革跟上现代数学发展的步伐.整合经典的解析几何学、仿射几何学和射影几何学,作为新的解析几何内容,作为数学专业的基础课程之一列入教学计划.对于经典几何学中的向量代数的基本内容和核心精神,由于在中学已经讲授,并且在高等代数中会有更详尽的处理,所以这些内容在整合后的解析几何中可以直接作为工具来应用.对于三种几何学的相关内容,要统一处理并做相应的比较,旗帜鲜明地体现出Klein的几何学思想,明确课程的不可替代性,确立课程传承几何思想的地位.在这里,可能涉及到群概念的知识欠缺,可以适当补充介绍.
4.解析几何课程改革后的教材内容设置.
整合后的解析几何内容包含四部分内容.
第一部分 准备知识
Ⅰ 几何变换理论
Ⅱ 群与变换群
Ⅲ 群在集合上的作用
Ⅳ 几何不变量理论
Ⅴ Klein几何观点——爱尔兰根纲领简介
第二部分 空间中的线性解析几何
Ⅰ 欧氏几何中的点、直线、平面
Ⅱ 仿射几何中的点和直线
Ⅲ 射影几何中的点和直线
第三部分 空间中的非线性解析几何
Ⅰ 欧氏几何中的二次曲线的化简和分类
Ⅱ 仿射几何中的二次曲线的化简和分类
Ⅲ 射影几何中的二次曲线的化简和分类
Ⅳ 欧氏几何中的二次曲面
第四部分 球面几何与罗氏几何简介
Ⅰ 球面几何
Ⅱ 罗氏几何简介
5.解析几何教材的编写.
教材编写要有特色,要体现现代教育思想观念和教学理念,主导教学方法的改革.我们建议,教材编写要突出问题性,通过设置各种问题启发学生思维,引导教师贯彻启发式教学原则.同时,根据课程的特点,教材编写应与现代教育技术有机整合,使教学能够有效利用现代教育技术,突出直观性,帮助学生理解,提高教学效率.
作为数学专业基础课的解析几何课程的改革会影响其他课程的内容设置和教学计划的安排,尤其是传统的三门基础课之间的关联.我们认为,作为三门基础课的数学分析、高等代数、解析几何,在内容安排上可以互相补充和渗透,并不一定非得逻辑地线性地进行安排讲授,那样做也是不现实的.因为数学从整体上讲是逻辑的,但发展过程不是一个学科发展完而再发展另一个学科的,而是交叉进行的.所以,作为教学课程,也不可能一门课程完全在另一门课程之前或之后来讲授,可以允许交叉渗透.这样,我们可以统筹考虑如下:
1.数学分析的基础问题.
传统认为解析几何为数学分析的学习提供基础.根据目前中学课程改革情况看,数学分析前期内容的学习,中学解析几何和向量内容部分基本够了,个别的基础解析几何知识可在分析课程中适当补充.后面多元微积分的学习需要空间解析几何做基础,中学学习不够,考虑到数学分析第三学期学习多元微积分内容,我们可以在第三学期开设解析几何课程,跟多元微积分几乎同步进行学习.
2.高等代数作为前奏.
课程安排上,整合后的解析几何应该放在高等代数之后来开设.原因是高等代数中的二次型理论、矩阵的相关理论和线性空间、线性变换以及内积空间的代数工具可以直接纳入到研究几何的工具中,而不必要再做详细的铺垫.至于经典的解析几何的向量代数所承担的高等代数中的空间理论的模型角色,已经完全放在中学来实现.高等代数安排在第一学期开设,一年课程,正好为第三学期学习解析几何课程做基础.
这样一来,三门基础课在三个学期内开设完成,第一学期、第二学期开设分析、代数,第三学期开设分析、几何.
3.后继课程的学习也要体现几何思想.
近世代数课程的学习中,可以在深刻地学习群论知识后,进一步阐释Klein的几何学群论观点;复变函数的学习过程中,应该引导学生在等距群之下更好地理解球面几何和罗氏几何.
[1] 巩子坤.论数学思想方法视域下的解析几何课程改革[J].曲阜师范大学学报,2006,32(1):125-128.
[2] 汪晓勤.Klein M的数学教育思想与高等数学教学[J].曲阜师范大学学报,2004,30(4):106-110.
Study on the Curriculum Reform of Analytic Geometry in Universities
S HAO Guang-hua1, WA N G Pei-he2
(1.College of Teachers Education,Ningbo University,Ningbo,Zhejiang 315211,China; 2.School of Mathematical Science,Qufu Normal University,Qufu,Shandong 273165,China)
This paper states here probes into the curriculum reform of analytic geometry teaching in universities from the aspects of the general current teaching situation and the curriculum reform in universities,nececity of the reform,the reformed management of the teaching content and method.And also,we put forward to the content and management about the structure of the teaching material on analytic geometry.
curriculum reform;Klein’s geometrical option;transformation group;analytic geometry
G420;O182
C
1672-1454(2011)03-0017-05
2008-12-03
全国教育科学规划“十一五”教育部重点课题(DHA060137)