涡流发生器应用发展进展

2011-02-27 07:28黄红波
关键词:附面层边界层涡流

黄红波 陆 芳

(中船重工集团第七O二研究所 无锡 214082)

涡流发生器(vortex generator)自1947年首次被美国联合飞机公司的Bmynes和Tayler提出,到目前已广泛应用于航空、流体机械、冶金化工、汽车、船舶等领域.涡流发生器实际上是以某一安装角垂直地安装在机体表面上的小展弦比小机翼,所以它在迎面气流中和常规机翼一样能产生翼尖涡,由于其展弦比较小,翼尖涡的强度相对较强.这种高能量的翼尖涡与其下游的低能量边界层流动混合后,就把能量传递给边界层,使处于逆压梯度中的边界层流场获得附加能量后能够继续贴附在机体表面而不致分离.

1 涡流发生器应用分类

1.1 涡流发生器尺寸大小分类

涡流发生器按大小分三类,即普通涡流发生器(VG)、亚附面层涡流发生器(SBVG)和微型涡流发生器(MVG).普通涡流发生器初期多布置于飞机外翼段,也有布置于机翼根部和机翼中部,由于其外形尺寸较大,其高度与当地附面层的厚度相当甚至略大,对附面层分离的控制效果较好,但带来的附加阻力也相应增加,特别是在非工作状态,即附面层不分离情况下,产生较大的额外附加形状阻力,正是由于此原因,普通涡流发生器应用较大局限性,逐渐淡出人们的视野.

亚附面层涡流发生器和微型涡流发生器主要是指其高度是当地附面层厚度的1/10~1/2,大量试验结果表明,亚附面层或微型涡流发生器延迟附面层的分离效果与普通涡流发生器效果相当,而附加阻力仅是普通VG的1/10.特别是MVG在许多增升装置中成功应用,如美国NASA Langley研究中心的J.C.Lin[1]等研究的微型涡流发生器应用在三段翼型的襟翼上,在相同的迎角下,分别把升力系数和升阻比提高10%和80%.

1.2 涡流发生器应用形式分类

根据涡流发生器控制附面层分离情况,可以分为被动型和主动型.

目前应用最为广泛的是固体式的被动型涡流发生器.此类涡流发生器安装在特定位置,针对特定工况下,可以很好的延缓湍流附面层的分离,起增升降阻作用,但当不存在流动分离的情况下,被动式涡流发生器会增加形阻.

主动式涡流发生器是指涡流射管(vortex generator jet),在易产生流动分离区域前方一定距离处,安装特定管径、特定偏航角度(与主流方向间夹角)、特定俯仰角度、特定射流速度(与主流速度比值)的射管,根据运行工况,可以调节涡流射管射流速度,达到合理利用涡流发生器控制流动分离的目的.

2 被动式涡流发生器应用

2.1 被动式涡流发生器在增升降阻中的应用

早在20世纪60年代,Schubauer,Lachmann,Pearcey[2]对涡流发生器控制平板湍流附面层的流动机理进行了研究,研究了涡流发生器流动的湍流结构、流向涡的发展等.进入20世纪90年代,涡流发生器应用于飞机部件流动控制的研究进入高潮,Klausmeyer[3],J.C.Lin,Wheeler,Broadley[4],Fulsang Ashill[5]等对用于翼型和机翼湍流附面层控制的涡流发生器原理作了大量试验研究工作.国内对涡流发生也进行了大量研究,如段卓毅[6]等简要回顾了涡流发生器在飞机增升装置中的应用.倪亚琴[7]研究涡流发生器及其对边界层的影响.阎文成[8]对涡流发生器进行系统性研究总结,并针对一超临界翼形,在西北工业大学国防重点试验室NF-3低速风洞试验室中进行了超临界翼型的转捩特性,压力分布特性及气动力特性等.

涡流发生器,关键因素之一是其高度与当地附面层厚度之间的关系.因为湍流边界层速度特性如图1所示,边界层厚度0.2δ以下,是粘性作用的主要区域,速度从零增长到外流速度的75%左右,在粘性和逆压梯度双重作用下,导致边界层在该区域发生分离,可见,只要该区域的流动速度得到提高,边界层抵抗分离的能力就增加,因此涡流发生器控制流动分离的机理是:涡流发生器产生的涡流应尽可能地注入到边界层厚度0.2δ(δ为边界层厚度)以下,靠近物面边界层的底部.

图1 湍流边界层速度剖面

2.2 被动式涡流发生器在加速热交换中的应用

涡流发生器由于其能加速后方湍流附面层内流体的流动速度,使边界层厚度变薄,从而减小热阻,起到强化热交换的目的,因此逐步应用于冶金、化工、石化、能源等领域进行强化换热,提升热能利用.如周国兵[9],郑慧凡[10]等进行了涡流发生器对强化换热的试验.结果表明,涡流发生器能明显改善换热效果,而且影响换热效果关键因素为迎流夹角及排列方式等.

2.3 被动式涡流发生器在船舶领域的应用

涡流发生器由于其能延缓流体分离,加速附面层内流体的流体速度,因此,近年来船舶工作者将其引入,收到意想不到的效果.

Lee Pyungkuk[11]等人利用CFD计算技术,探讨了三角形涡流发生器对低速船舶尾流场的影响.他们在划分网格时,在涡流发生器附近进行加密处理后,共计算了涡流发生器在船舶不同纵向位置、不同高度(横向位置)、不同迎流夹角等螺旋桨处流场特性,即计算涡流发生器后流线,轴向伴流分数以及速度分布云图,计算结果表明,安装合适的涡流发生器后轴向速度可增加10%左右,如图2,图3.

图2 螺旋桨0.7R处伴流曲线

图3 涡流发生器在不同纵向位置速度分布

2008年,中船重工702研究所陆芳、黄红波[12]等人遇到某大湖型船螺旋桨存在严重的桨船连体涡空泡,试验中螺旋桨空泡诱导脉动压力极为剧烈,超出此类船舶脉动压力可接受范围,为了解决脉动压力引起船舶振动问题,重新设计多个螺旋桨(增大侧斜,改变纵倾,叶梢部御载等)均未解决螺旋桨连体涡空泡,随后利用CFD的计算分析发现,该船尾有严重的流动分离现象,如图4a)所示,通过在船体尾部合适位置安装优化的涡流发生器后,船尾流动分量消失,如图4b)所示,随后在船模尾部合适位置安装合适涡流发生器,在大型循环水槽进行了原桨空泡脉动压力试验,在涡流发生器条件下,螺旋桨连体涡空泡完全消除,并大幅度降低螺旋桨激振力大小,如图5所示.渤海重工建造实船按此方案安装涡流发生器后,大幅度降低船舶振动,受到船东,船厂多方高底赞扬.这是涡流发生器首次在国内船舶减振上成功应用.

图4 大湖型船涡流发生器安装前后船尾流动比较

图5 涡流发生器对脉动压力影响

2010年,某多用途船[13]在实船首次试航时,实航航速满足要求,但其船尾部振动剧烈,各舱室、房间及办公场所振动、噪声几乎全超标,无法顺利交船.分析此船轴向伴流场发现,此船伴流场分布形式与2008年大湖型船伴流场极为相似,因此考虑使用涡流发生器作为该多用途船减振手段,在大型循环水槽进行了涡流发生器优化试验方案研究,试验结果表明:合适的涡流发生器能大幅度降低螺旋桨空泡诱导脉动压力大小,如图6所示.

图6 涡流发生器安装前后脉动压力实船预报结果对比

实船按模型试验优化方案安装涡流发生器后进行了第二次实船试航,实船航速几乎无变化(两次航速变化在0.2%以内),但船尾部分测点(主机房、主甲板、二层甲板、三层、四层甲板的房间以及办公场所、驾驶室以及雷达桅杆处甲板等)处振动明显减小,如图7所示.实船二次试航结束半月后,船厂圆满完成了交船任务.

图7 涡流发生器安装前后振动测量结果比较

3 主动式涡流发生器应用

主动式涡流发生器(vortex generator jet)可以实现主动流动控制,在不同运行工况均能工作,并取得较好效果.特别是在流体机械领域,叶轮和扩压器内流动分离失速直接关系到压缩机的运行安全,人们在对流体机械内流动机理进行研究的同时,逐渐将目光转到对流体机械内部流动控制方面的研究上.在过去用于流动分离控制的技术设备中,最成功的策略是向将要发生分离的边界层内吹入高动量的流体,以抑制流动分离的发生,提高压缩机性能.

与固体涡流发生器相比涡流喷管具有实现主动流动控制的潜力.主动的直接作用于湍流的微细涡流控制方法,可以随着流动状态的变化适时地加以调整,是一种非常灵活的控制策略.通过调节阀门,控制诱发涡的强度,在适当的流动条件下,当分离失速控制不需要实施时,只要关闭喷射管就可以了,采用涡流喷管不会象固体涡流发生器那样产生阻力损失.

涡流喷管的性能主要包括以下参数:安装位置、管径、射流管与流动方向所形成的前向倾斜角、射流管与壁面所形成的侧向倾斜角、射流速度与主流速度之比,如果布置多个射管,还需要考虑涡流射管的个数与间隔,常见涡流发生器配置如图8所示.

图8 涡流发生器配置示意

涡流射管技术最初于1952年被Wallis作为一种主动的控制方法引入,主要用于推迟湍流边界层激波分离的目的.

2003年,Rixon[14]和Johari在水筒中利用粒子成像技术对涡流发生器控制边界层的效果进行实验测量,实验得到主流涡的流通环量、峰值强度及在壁面法线上的位置与喷射速度成线性关系,旋涡的位置、强度和影响范围与向射流的前向偏斜角、速度比有着密切关系,在了一个最优位置和尺寸参数使得流动分离控制效果达到最佳状态.郭婷婷[15]等人研究了射入均匀横流中单股湍动射流对流场的影响,认为倾斜角度和速度比对流场影响很大,射流对主气流的影响主要集中在射流发生弯曲直至与主流平行的区域中.

孙得川[16]等人对平板单股射流干扰流场和喷管扩张段二次射流干扰流场进行了数值研究,数值结果显示射流/主流总压比的升高使射流穿透深度增加,分离点远离射流处,并且射流与主流的夹角、射流宽度对干扰流场的主要特征有一定影响.

Linu[17]和Nishi等人采用雷诺平均N-S方程结合紊流模型对4种类型的扩压器在带有和不带有涡流发生成器时内部流动进行了数值分析.数值结果考察了速度比、涡流发生成器配置数目、位置、孔径等参数对扩压器性能的影响以及纵向涡、二次涡在扩压器内的生成、发展和衰减过程.在一定的速度比范围内,压力恢复系数随射流速度比增大而增大.随着流动向下游发展,诱发涡的强度迅速衰减(非线性的),涡的尺寸(流动影响区域)增大.

关于涡流发生器流动控制的研究,大多数都提示了其在流动控制领域的应用价值和巨大潜力.通过对涡的生成、迁移和耗散过程及其对边界层内部流场的研究,为进一步提高其控制性能打下坚实的基础.美国、日本等发达国家在涡流发生器机理及其在湍流边界层分离控制中的应用等方面进行了卓有成效的研究.目前我国关于涡流发生器的研究处于发展阶段,对于涡流发生器在叶轮机械中的应用,特别是在抑制叶轮机械内流动分离、扩大稳定工况范围等方面还没有进行实际有效的研究,还有许多问题有待解决.

4 结 论

1)船舶振动噪声问题日益增多,绿色环保船舶是未来发展趋势,涡流发生器是解决船舶尾部振动最为简便有效措施之一,值得深层次分析研究,拓展其应用广度.

2)涡流射管作为一种主动控制手段,可广泛应用多个行业领域,但其控制参数众多且相互影响,需要归纳主要控制参数影响规律,扩大其在工程应用可靠性.

3)涡流发生器涡生成机理,涡运行过程,是认识涡流发生器功效最根本原因,需理论分析并试验验证.

[1]Lin J C.Control of turbulent boundary-layer separation using micro-vortex generators[R].AIAA paper NO.99-3404,1999.

[2]Peake D J,Henry F S,Pearcy H H.Viscous flow control with air-jet vortex generators[R].AIAA paper NO.99-3175,1999.

[3]Klausmeyer S M,Papadakis M,Lin J C.A flow physics study of vortex generators on a multi-element airfoil[R].AIAA Paper NO.96-0548,1996.

[4]Broadley I,Garry K P.Effectiveness of vortex generator position and orientation on highly swept wings[R].AIAA paper NO.97-2319,1997.

[5]Ashill P R,Fulker J L,Hackett K C.Research at dera on sub boundary layer vortex generators(SBVGS)[R].AIAA paper No.2001-0887,2001.

[6]段卓毅,陈迎春,赵克良,曹 旭.微型涡流发生器在飞机增升装置中的应用[J].国际航空,2004(3):58-59.

[7]倪亚琴.涡流发生器研制及其对边界层的影响研究[J].空气动力学学报,1995(1):110-116.

[8]阎文成.超临界翼型附面层分离及控制方案研究[D].西安:西北工业大学工程力学系,2004.

[9]周国兵,张于锋,齐承英.几种翼型涡流发生器强化换热及流组性能的实验研究[J].天津大学学报,2003,36(6):735-738.

[10]郑慧凡,高平安.新型强化换热方法的换热性能的研究[J].四川化工与腐蚀,2003,6(4):52-55.

[11]Lee Pyungkuk,JeongYoungjun,Byun Taeyoung.A study on the stern flow affected by vortex generator for low speed vessel[C]//Proceedings of 3rd PAAMES and AMEC,2008:63-68.

[12]Lu Fang,Huang Hongbo.Cavitation observation and pressure fluctuation measurements for model propellers of××DWT bulk carrier[R].无锡:702所科技报告,2008.

[13]黄红波,陆 芳.涡流发生器在民船减振上的应用研究[R].无锡:702所科技报告,2010.

[14]Rixon G S,Johari H.Development of a steady vortex generator jet in a turbulent boundary layer[J].Transaction of the ASME,2003,125:1006-1015.

[15]郭婷婷,徐 忠,李少华.2种角度横向紊动射流的实验分析[J].西安交通大学学报,2003,37(11):1 207-1 210.

[16]孙得川,蔡体敏.超声速流动中横向射流场的影响参数[J].推进技术,2001,22(2):147-150.

[17]Liu X M,Nishi M.Time-averaged flow in a conical diffuser with vortex generator jets[C]//The Fourth Internation Conference on Pumps and Fans.Beijing(Invited Paper),2002.

猜你喜欢
附面层边界层涡流
一维摄动边界层在优化网格的一致收敛多尺度有限元计算
基于数值模拟的流场附面层边缘识别方法
Bakhvalov-Shishkin网格上求解边界层问题的差分进化算法
基于CFD仿真分析的各缸涡流比一致性研究
基于HIFiRE-2超燃发动机内流道的激波边界层干扰分析
涡流传感器有限元仿真的研究与实施
超声压气机叶栅流场的数值模拟与试验验证
一类具有边界层性质的二次奇摄动边值问题
关于CW-系列盘式电涡流测功机的维护小结
电涡流扫描测量的边沿位置反演算法研究