宋晓新, 王红菲
(1.河南大学数学与信息科学学院,河南开封 475001; 2.河南大学应用数学研究所,河南开封 475001; 3.开封大学五年制工作部,河南开封 475004)
关于 Kaehler-Einstein流形上Rastogi联络的一点注记
宋晓新1,2, 王红菲3
(1.河南大学数学与信息科学学院,河南开封 475001; 2.河南大学应用数学研究所,河南开封 475001; 3.开封大学五年制工作部,河南开封 475004)
研究Kaehler-Einstein流形M上Rastogi;联络的拟共形曲率张量场W¯,证明了若W¯是平行的,则 M是拟共形对称的.也得到关于M共圆对称的对应条件和结果,推广了Rastogi,贾兴琴等的工作.
Kaehler-Einstein流形;对称度量联络;拟共形曲率张量场
致谢 本文得到巴黎大学博士吴报强教授指点与帮助,谨致深切的谢意!
[1] Golab S.On semi-symmetric and quarter symmetric limear connections[J].Tensor,N.S.,1975,29:249-254.
[2] M ishra R S and Pardey SN.On quarter symmetric metric F-connections[J].Tenso r,N.S.,1980,34:1-7.
[3] Yano K and Imai T.Quarter symmetric connections and their curvature tenso rs[J].Tensor N.S.,1982,38: 13-18.
[4] Rastogi SC.On quarter-symmetric metric connection[J].Comp tes Rendus de lacad Bulgar des Science,1978,31: 811-814.
[5] Rastogi SC.On quarter-symmetric metric connection[J].Comp tes Rendus de lacad Bulgar des Science,1985,38: 985-988.
[6] Rastogi SC.On quarter symmetric-metric connection[J].Tensor N.S.,1987,44:133-141.
[7] Desai P and Amur K.On symmetric spaces[J].Tensor N.S.,1975,29:119-124.
[8] 宋晓新,贾兴琴.关于 Kaehler-Einstein流形上的Rastogi联络[J].河南大学学报,2007,2:441-443.
A Remark on Rastogi Connections in Kaehler-Einstein Man ifolds
SONG Xiao-xin1,2, WANG Hong-fei3
(1.College of Mathematics and Info rmation Science,Henan Univ.,Kaifeng 475001,China;
2.Institute of App lied Mathematics,Henan University,Kaifeng 475001,China;
3.Dep t.of 5 years Work,Kaifeng Univ.,Kaifeng 475004,China)
Quasi conformal curvature tensor fields¯W of Rastogi Connections in Kaehler-Einstein Manifolds M has been studied.We p roved that M is of quasi conformal symmetric if¯W is of parallel.The corresponding condition and Result on concircular symmetric is also obtained.Works of Rastogi.Jai Xinqin have been generalized.
Kaehler-Einstein manifolds;quarter symmetric metiic connections;quasi conformal curvature tenso r
O186.16
A
1672-1454(2010)03-0060-04
2007-10-05
河南省教育厅自然科学基金(2008B110002,200510475038);河南大学自然科学基金(2004YB12W 042)