展开方法及Fitzhugh-Nagumo方程新的孤波解

2010-09-20 03:29周建荣
关键词:理学院数学系双曲

周建荣

(佛山科学技术学院 理学院数学系, 广东 佛山 528000)

周建荣

(佛山科学技术学院 理学院数学系, 广东 佛山 528000)

应用展开方法导出了Fitzhugh-Nagumo非线性方程新的孤波解.

孤波解;展开方法; Fitzhugh-Nagumo方程

近年来, 寻求非线性方程的行波解已引起人们的极大兴趣. 目前, 求解非线性方程比较成功的方法有齐次平衡法[5], 逆散射方法[2], Hopf-Cole变换法[12], Exp函数展开法[13], 双曲正切函数展开法[3,11], Sine-Cosine方法[15], 辅助方程法[14], 双曲函数法[4], 第一积分法[1,9]和双线性法[6], 等等.

新的孤波解, 其中δ为实常数.

这里的求导是关于波变量ξ.

应用方程(4), 从(3)式可得

应用数学软件Maple解此方程组得三组解:

(6)~(13)式是在文[11]中通过Tanh-Coth方法已经得到的孤波解.

[1] S. Abbasbandy, A. Shirzadi.The first integral method for modified Benjamin–Bona–Mahony equation[J]. Commun Nonlinear Sci Numer Simulat 2010, (15): 1759~1764

[2] Ablowitz MJ, Clarkson PA.Solitons,nonlinear evolution equations and inverse scattering transfor[M]. Cambridge: Cambridge University Press, 1990

[3] Bekir A.Applications of the extended tanh method for coupled nonlinear evolution equations[J]. Commun Nonlinear Sci Numer Simulat 2008, 13(9): 1748~1757

[4] Chaofa Deng.New exact solutions to the Zakharov–Kuznetsov equation and its generalized form[J]. Commun Nonlinear Sci Numer Simulat 2010, 15: 857~868

[5] Fan E, Zhang H.A note on the homogeneous balance method[J]. Phys. Lett. A 1998, (246): 403~406

[6] Hirota R.Direct method of finding exact solutions of nonlinear evolution equations[J]. In: R. Bullough , P. Caudrey(Eds.), Backlund Transformations, Springer, Berlin 1980: 1157~1175

[7] Hai-Ling Lü, Xi-Qiang Liu, Lei Niu.A generalized-expansion method and its applications to nonlinear evolution equations[J].Applied Mathematics

and Computation 2010, (215): 3811~3816

[8] F. Tascan, A. Bekir.Travelling wave solutions of the Cahn-Allen equation by using first integral method[J]. Applied Mathematics and Computation 2009, 207: 279~282

[9] F. Tascan, A. Bekir, M. Koparan.Travelling wave solutions of nonlinear evolution equations by using the first integral method[J]. Communications in Nonlinear Science and Numerical Simulation 2009, 14: 1810~1815

[10] Wang ML, Li X, Zhang J.The-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics[J]. Phys. Lett. A 2008, 372(4): 417~423

[11] Wazwaz AM.The tanh-coth method for solitons and kink solutions for nonlinear parabolic equations[J]. Appl. Math. Coptut. 2007, 188: 1467~1475

[12] Wazwaz AM.Multiple soliton solutions for a (2 + 1)-dimensional integrable KdV6 equation[J]. Commun Nonlinear Sci Numer Simulat 2010, 15: 1466~1472

[13] Xu F.Application of Exp-function method to symmetric regularized long wave (SRLW) equation[J]. Phys. Lett. A 2008, 372(3): 252~257

[14] Yunxi Guo, Shaoyong Lai.New exact solutions for an (N+1)-dimensional generalized Boussinesq equation[J]. Nonlinear Analysis 2010, 72: 2863~2873

[15] Yusufoglu E, Bekir A, A, Alp M.Periodic and solitary wave solutions of Kawahara and modified Kawahara equations by using sine-cosine method[J]. Chaos, Solitons & Fractals 2008, 37(4): 1193~1197

ZHOU Jian-rong
(Department of Mathematics, Foshan University, Foshan 528000, China)

The-expansion method is used to construct new solitary wave solutions of Fitzhugh-Nagumo equation.

solitary wave solutions;-expansion method; Fitzhugh-Nagumo equation

O175.29

A

1672-5298(2010)03-0021-03

2010-01-15

广东高校优秀青年创新人才培育项目(LYM08101)

周建荣(1978- ), 男, 湖南永州人, 博士, 佛山科学技术学院理学院数学系讲师. 主要研究方向: 渐近分析及非线性问题

猜你喜欢
理学院数学系双曲
一类双曲平均曲率流的对称与整体解
中国科学技术馆之“双曲隧道”
V-苯烯纳米管的逆基于度的拓扑指数
碳纳米锥的基于乘法度的拓扑指数
双曲型交换四元数的极表示
北京师范大学数学系教授葛建全
西安航空学院专业介绍
———理学院
基于双曲和代数多项式的HC-Bézier曲线
Constructing DHCP Using Electronic Archetypes
Itô积分和Str atonovich积分的比较