杨梅霞
九年义务教育数学课程标准指出,小学低年级学生应口述应用题的条件和问题,中、高年级学生应逐步学会有条理地说明解题思路。由此可见,“说”也是一种数学能力,需要严格的训练。纵观当前的数学课堂教学现状,教师对说的训练较为忽视,指导乏术。在数学教学中,应如何结合教学内容,培养学生“说”的能力呢?
一、抓住过渡环节比较说
义务教育材料的编写依据了“最近发展区”的原理,非常注意承上启下,旧知迁移。每教学一个知识点,大都安排了复习题或准备题,在新旧知识的沟通处,教师应让学生说一说例题与复习题有什么异同,在解答上有什么不同,通过比较说明使学生弄清解题的思路。
如教学分数除法应用题,教材中安排了一道复习题和例题。
复习题:“小营村全村有耕地75公顷,其中棉田占——。小营村的棉田有多少公顷?”
例题:“例1:小营村有棉田45公顷,占全村耕地面积的——。全村的耕地面积是多少公顷?”
教学中,教师应让学生在复习题和例题这个新旧知识的沟通处比较说明条件与问题的异同以及在解法上的联系,使学生弄清分数乘、除法应用题之间的联系及分数除法应用题的解题方法,做到既能有条理的思考问题,又能清楚地说出完整的思维过程,培养学生的有序思维能力。
二、紧扣问题启发说
义务教育数学教材十分重视学生对问题进行判断、推理,要求学生自己归纳结论,自己进行分析比较,并设计了许多问题,让学生有根有据、有条有理地进行思考。
如义务教育数学教材第十一册中,教学分数乘、除法的计算,教材要求学生总结计算法则;教学整数、小数、分数四则混合运算,教材要求学生比较一组题中的几道题有什么相同点和不同点?各把谁看作单位“1”?教学较复杂的分数乘、除法应用题,教材要求学生说明用算术解法直接列式与列方程解答的解题思路有什么联系?有什么不同?…因此,教师在教学中,应紧扣这些问题,启发诱导学生积极思考,培养学生分析问题和解决问题的能力。
三、凭借图表想象说
义务教育数学教材中有不少插图、线段图,教学中教师应利用图表帮助学生学习。让学生视图说意,看图编题,能够较好地提高学生的观察能力和口头表达能力。
如教一年级学生学习加减法应用题时,教师设计两幅图。每幅图中的河岸上都有5只鸭,河里都有3只鸭,但河里的鸭子游水的方向不同,一幅是“游来”,一幅是“游去”。可让学生用自己的话把题意说出来。既培养了学生的观察、表达能力,又加深了学生对应用题结构的认识。
四、感知实例抽象说
在概念教学中,注意让学生感知一些实例,通过语言描述建立起表象,从而理解概念。
如学生对长度、面积、体积单位常常使用混乱,这是由于学生头脑中缺乏各单位相应的表象所致。在教学面积单位时,教师可让学生感知实物(1平方厘米、1平方分米、1平方米大小的物体表面)的基础上,抽掉实物,再让学生闭上眼睛默想实物的形象,最后用语言描述有关面积单位的形象,就能促进对面积单位的理解掌握。
五、扩展运用自由说
为了培养学生的创造意识,在练习中,可以组织编题训练和一题多解训练,让学生把自己的想法,不拘形式地自由地说出来。
例如,当学生解答“一辆汽车4小时行驶160千米。照这样计算,要行驶560千米,需要几小时?”当问及可用几种方法解题时,学生发言如下:
(1)先求每小时行多少千米,再求560千米里包含几个每小时的千米数,则需要几小时。
(2)可以先求行1千米要多少小时,然后用每千米所用的时间乘以560就得到560千米所用的时间。
(3)看560千米里有几个160千米,有几个160千米,则有几个4小时。
(4)可用比例解。由于速度一定,路程与时间成正比例,160千米与4小时比值等于560千米与x小时的比值。
学生从不同角度思考,思维非常积极,自由表达,相互交流,加深了对知识的理解和综合运用。
教学实践证明,结合数学特点,对学生加强说的训练,久而久之,既能提高学生数学语言的表达能力,又能促进思维能力的进一步提高。