高珊1,2
(1.中南大学数学科学与计算技术学院,湖南长沙 410075; 2.阜阳师范学院数学与计算科学学院,安徽阜阳 236041)
具有红利边界的Erlang(2)风险模型
高珊1,2
(1.中南大学数学科学与计算技术学院,湖南长沙 410075; 2.阜阳师范学院数学与计算科学学院,安徽阜阳 236041)
给出了具有边界红利策略的Erlang(2)风险模型,在此红利策略下,若保险公司的盈余在红利线以下时不支付红利,否则红利以低于保费率的常速率予以支付.对于该模型,本文推导了Gerber-Shiu折现惩罚函数所满足的两个积分-微分方程和更新方程.
Erlang(2)风险过程;折现惩罚函数;积分-微分方程;红利策略
边界策略最初是De Finetti(1957)对二项模型提出的,最近关于复合Poisson风险模型更一般的边界策略得到广泛的研究[1-7].本文考虑具有如下边界红利策略的Erlang(2)风险模型:
δ≥0可以代表利息强度,I(…)表示示性函数,w(x1,x2)是关于x1≥0和x2>0的非负有界函数.
在这部分我们将推导关于mb(u)的两个积分-微分方程,一个是当初始盈余低于边界的时候,另一个是初始盈余高于边界.令
[1]A lbrecher H,Hartinger J,Tichy R F.On the distribution of dividend paym ents and the discounted penalty function in risk modelwith linear dividend barrier[J].Scandinavian Actuarial Journal,2005,2:103-126.
[2]Gerber H U,Shiu E SW.On op tim al dividend strategies in the com pound Poissonmodel[J].North Am erican Actuarial Journal,2006,10(2):76-93.
[3]Lin X S,W illm ot G E,D rekic S.The classical risk model with a constant dividend barrier:analysis of the Gerber-Shiu discounted penalty function[J].Insurance:Mathem atics and Econom ics,2003,33(3):551-566.
[4]Gerber H U,Shiu E SW.The time value of ruin in a Sparre Andersen model[J].North American Actuarial Journal,2005b,92:49-84.
[5]Lin X S,Pavlova K P.The com pound Poisson risk model with a threshold dividend strategy[J].Insurance:Mathem atics and Econom ics,2006,38:57-80.
[6]Li S,Garrido J.On a class of renewal riskmodelswith a constant dividend barrier[J].Insurance:Mathematics and Econom ics,2004,35:691-701.
[7]方世祖,罗建华.双复合Poisson风险模型[J].纯粹数学与应用数学,2006,22(2):271-278.
[8]Li S,Garrido J.On ruin for Erlang(n)risk process[J].Insurance:Mathem atics and Econom ics,2004,34:391-408.
[9]D ickson D C M,Hipp C.On the time of ruin for Erlang(2)risk process[J].Insurance:Mathem atics and Econom ics,2001,29:333-344.
[10]Lin X S.Discussion of Y.Cheng and Q.Tang’s Moments of the surp lus before ruin and the deficit at ruin inthe Erlang(2)risk p rocess[J].North Am erican Actuarial Journal,2003,7(3):122-124.
The Erlang(2)risk model with adividend barrier
GAO Shan1,2
(1.School of Mathem atics,Central South University,Changsha 410075,China; 2.Department of Mathematics,Fuyang Normal College,Fuyang 236041,China)
In this paper,we present the Erlang(2)risk model with a dividend barrier strategy.Under such strategy,no dividends are paid if the insurer’s surp lus is below certain barrier level,when the surp lus is above this barrier level,dividends are paid at a constant rate that does not exceed the prem ium rate.For the risk model,two integro-differentialequations and a renewalequation for the Gerber-Shiu discounted penalty function are derived.
Erlang(2)risk model,discounted penalty function,integro-differential equation,dividend strategy 2000M SC:60K 20,91B30
O211.67
A
1008-5513(2009)02-0251-07
2007-09-04.
安徽省高等学校省级自然科学研究项目(KJ2007B 183).
高珊(1975-),博士,讲师,研究方向:随机过程,排队论.