孙琪斌
如何做好“一元一次方程”的预习呢?请看孙老师的建议.
预习本章时,你需要尝试全面阅读表格,要善于从不同的角度观察上面的表格,要带着自己的理解走进课堂.
如果遇到自己没有想到的地方,你可以这样思考:这个地方,我为什么没有想到?他(她)怎么会从这样的角度开始思考?今后遇到类似的表格,我是否也能够如此思考呢?
2.要认真领会数学思想.
如“有一批图书,若每人分3本书,则剩余20本;若每人分4本书,则还缺25本.求这批图书的实际数量”这个问题中,分别从“每人分3本书,则剩余20本”与“每人分4本书,则还缺25本”两种不同的角度,表示同一个量:这批图书的实际数量.
“利用不同的方式或者不同的角度,表示同一个量,从而建立方程”,其实就是一种数学思想.这种思想就是“表示同一个量的两个不同的式子相等”.
这批书的总数是一个定值,表示它的两个式子应相等,根据这一相等关系,设有x人,列得方程:3x+20=4x-25.
3.不要忽视知识、方法框图.
本章有多处知识、方法框图,在预习时,对于这些框图,要给予适当的关注,要结合学习的不同进程反复阅读这些框图.
如,课本第12页的结构图(如图1),你最好能够分别在学习新课、自主解题、后续学习(如学习“实际问题与一元一次方程”)、单元回顾、阶段性考试等阶段,多次关注这个框图,争取走进温故知新的学习境界.
又如,阅读如图2所示的框图,可与尝试书写一元一次方程的解法相结合,阅读这个框图,重在感受某些形式较复杂的一元一次方程向x=a的转化过程.
4.联系身边的生活.
如,某车间有22名工人生产螺钉与螺母,每人每天平均生产螺钉1 200个或螺母2 000个,一个螺钉要配两个螺母.为了使每天的产品刚好配套,应该分配多少人生产螺钉,多少人生产螺母?
这个问题是学习的难点.
你可以寻找一套螺母与螺钉,帮助理解其中的等量关系;也可以结合身边的生活实际,将螺钉、螺母问题更换为眼镜片与眼镜架的问题,帮助寻找其中的关系.
5.例题,更是预习的范例,你需要先行自主尝试.
例题,固然是需要等待老师讲解的问题,但更应该是你自主预习中的范例.
预习课本例题,重在预习过程中自主尝试.
如,课本第8页中的“解方程3(x-2)+1=x-(2x-1)”,在你自主先行尝试的过程中,也许会出现这样的问题:3x-2+1=x-2x+1.也可能会出现类似“3x-6+1=x-2x-1”这样的细节问题.
假如在预习中遇到问题,你自己能够解决,那么在课堂上,当老师讲解到这个问题时,你可以观察其他同学的学习结果.看看有多少同学出现了你预习中的问题,然后或帮助周围的同学解决这个问题,或借助其他同学出现的情况,引起自己的重视:原来很多人都可能在这里出现错误,看来我在今后的学习中,还需要多加小心!