摘要:文章系统综述了2023年茶树病虫害防控研究进展。国内外取得的主要研究进展包括,挖掘出一批茶树主要病虫害的高效微生物防控资源和天敌昆虫,解析了我国茶园重大害虫茶小绿叶蝉的求偶振动通信,鉴定出高效调控茶树-灰茶尺蠖、茶树-茶小绿叶蝉-寄生蜂间互作关系的化学信息,建立了茶树病虫害快速识别的多种模型。这些结果将为今后茶树病虫害高效绿色防控技术的创新研发提供有力支撑。
关键词:茶树;病虫害防控;研究进展;2023
中图分类号:S571.1;S433.2 文献标识码:A 文章编号:1000-3150(2024)10-01-7
Research Progress of Tea Pest Control in 2023
CAI Xiaoming, BIAN Lei, LUO Zongxiu, LI Zhaoqun, XIU Chunli, FU Nanxia, CHEN Zongmao
Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
Abstract: This paper systematically summarized the research progress of tea pest control in 2023. In this year, the research progress included the obtaining of a number of effectiSz0/NwRICHLvJhhO58YjOVOccAoiZ40kCggOg/7mz34=ve microbial resources and natural enemy insects against the major diseases and pests of tea plants, the resolution of the vibrational signals for sexual communication of tea leafhoppers, the identification of the effective chemical communication information among the tritrophic level, and the development of the several rapid detection models for tea pest. These information provided valuable references on the innovative development of the green control for tea pest.
Keywords: tea plant, pest control, research progress, 2023
茶树病虫害防控是保护茶叶生产安全,保障茶叶质量安全,促进茶产业绿色可持续发展的重要支撑。同时,茶是公认的有益人体健康的饮品,世界各国均对茶叶的质量安全赋予更多的关注。因此如何减少茶园化学农药施用、提升茶叶质量安全,是茶树植保工作者的首要任务。本文从茶树害虫基础生物学、茶树病虫害生物防控、茶树病虫害化学生态防控、茶树害虫物理防控、茶树害虫化学防控、茶树智慧植保6个方面,总结概述了2023年茶树病虫害防控研究进展,以期为今后研究提供借鉴。
1 茶树害虫基础生物学研究
东亚地区茶小绿叶蝉(Empoasca onukii)的群体遗传分化研究显示,相对于地理距离、景观隔离,气候差异在茶小绿叶蝉种群分化中起到了更大的作用;同时叶蝉种群的遗传多样性随局部温度的波动幅度增大而增加[1]。这一结果预示了在温度多变的未来,茶小绿叶蝉具备良好的适应能力和加速适应潜力。
近年部分茶区茶网蝽(Stephanitis chinensis)暴发成灾。通过测定茶网蝽12个地理种群的COI基因序列发现,我国茶网蝽群体遗传分化程度较高,基因交流较小,推测我国茶网蝽兼具入侵种群扩张成灾和原始种群扩张成灾的风险,建议茶网蝽发生茶区和大巴山脉周边茶园加强对该害虫的监测工作[2]。
通过田间调查明确,茶棍蓟马(Dendrothrips minowai)雌虫、若虫呈聚集分布,一年有2个为害高峰,分别为4—6月、8—10月,以成虫在茶树下部老叶越冬,田间以雌成虫为主,雄虫仅在6月有1个高峰[3];黑刺粉虱(Aleurocanthus spiuiferus)在北方茶园以若虫和伪蛹越冬,在越冬期间可缓慢发育至4龄若虫和伪蛹,田间越冬代呈聚集分布[4]。
小圆胸小蠹(Euwallacea fornicatus)复合种,包含E. fornicatus sensu stricto (s.s.) Eichhoff、E. fornicatior Eggers、E. kuroshio Gomez & Hulcr、E. perbrevis Schedl等4个隐种,是斯里兰卡、印度茶园重要害虫,近年在我国台湾茶园发生严重。调查研究显示,我国台湾茶园发生的种类主要是E. fornicatus sensu stricto (s.s.) Eichhoff和E. kuroshio Gomez & Hulcr;而在斯里兰卡严重发生的E. perbrevis Schedl种,未在我国台湾茶园发现[5]。
Wu等[6]对灰茶尺蠖(Ectropis grisescens Warren)的丝裂原活化蛋白激酶(MAPK)级联途径基因家族进行了鉴定,共鉴定出19个MAPKs基因;解析了基因结构、蛋白组织结构、遗传图谱等MAPK级联途径基因家族的分子进化特征。科研人员还鉴定出具解毒、气味降解功能的灰茶尺蠖羧酸酯酶、谷胱甘肽-S-转移酶基因,比较了灰茶尺蠖、茶尺蠖(Ectropis obliqua)两近缘种羧酸酯酶基因的表达谱差异[7-8]。
2 茶树病虫害生物防控研究
从茶园根际土壤放线菌、茶树内生细菌中,分离、鉴定出两株对茶炭疽病具较强抑菌活性的藤黄生孢链霉菌(Streptomyces luteosporeus, JS4-F)、枯草芽孢杆菌(Bacillus subtilis, X13),JS4-F、X13对茶炭疽病菌的拮抗效果分别为75.6%、61.6%,JS4-F对盆栽茶树炭疽病的防治效果达44.6%[9-10]。从茶树根际微生物中,分离、鉴定出1株荧光假单胞菌(Pseudomonas fluorescens)、1株枯草芽孢杆菌(Bacillus subtilis),具有高含量的几丁质酶和β-1,3-葡聚糖酶,可高效抑制茶茎溃疡病病原菌菌丝生长和孢子萌发[11];分离、鉴定出1株里氏木霉(Trichoderma reesei),对镰刀(Fusarium)菌引起的根腐病有较好的防控效果,防效达74%[12]。从深海微生物中,分离鉴定出1株枯草芽孢杆菌(Bacillus subtilis)、1株淡紫拟青霉(Paecilomyces lilacinus),对茶轮斑病病菌具较强的抑制活性,田间防效均可达75%以上[13]。研究发现,丛枝菌根真菌可激活茶树的生长素、乙烯和抗氧化系统,进而抑制茶炭疽病病菌的生长,减少35%的病斑产生[14];梅衣科真菌(Parmotrema austrosinense)产生的红粉苔酸,对茶赤星病、茶炭疽病、茶茎溃疡病等茶树病原真菌具优良的抑菌活性,防效甚至优于商品化的生物源杀菌剂[15]。此外,植物源农药补骨脂种子提取物可增强茶树的抗病性,提升茶树多酚氧化酶、过氧化氢酶、苯丙氨酸氨基醇酶、过氧化物酶等防御性酶的活性,对茶饼病有较好的控制效果[16]。田间单独使用或配合诱抗剂壳寡糖使用,对茶饼病的防效分别为61.7 %、70.5 %,与化学农药吡唑醚菌酯相当。
挖掘出多种茶树主要害虫的高效生物防控资源。针对茶丽纹象甲(Myllocerinus aurolineatus)、茶尺蠖,筛选出多个具高致病力的白僵菌、绿僵菌菌株[17-19];筛选出1种对茶跗线螨(Polyphagotarsonemus latus)具高致病力的球孢白僵菌菌株[20];获得了对印度茶园主要害虫大钩翅尺蛾(Hyposidra talaca)具强致病力的核型多角体病毒(NPV)毒株[21];明确了灰茶尺蠖的NPV对灰茶尺蠖、茶尺蠖幼虫具相似的致病力[22];明确了东亚小花蝽(Orius sauteri)、叉角厉蝽(Eocanthecona furcellate)、南方小花蝽(Orius similis),分别对茶棍蓟马、茶谷蛾(Agriophara rhombata)、茶网蝽具有较好的生物防控潜能[23-25];发现1种茶园新天敌绿点益蝽(Picromerus viridipunctatus),对茶园鳞翅目害虫具有较好的控害效能[26];发现广藿香(Pogostemon cablin)、香樟(Cinnamomum camphora)精油对茶小绿叶蝉具较强的熏蒸毒力,LC50分别为0.474、1.204 μL/mL[27]。此外,对茶尺蠖、灰茶尺蠖寄生蜂进行了鉴定[28],明确了40多年前国内报道的茶尺蠖幼虫期两种绒茧蜂,茶尺蠖绒茧蜂(Apanteles sp.)和单白绵绒茧蜂(Apanteles sp.)均可寄生茶尺蠖和灰茶尺蠖;经形态鉴定和分子比对,这两种广义绒茧蜂为尺蠖原绒茧蜂(Protapanteles immunis)和单白绵副绒茧蜂(Parapanteles hyposidrae),其中尺蠖原绒茧蜂为中国新记录种。
茶树抗性因子同样受到了学者们较多的关注。鉴定出UGT95B17、CsTPS1-AS、CsGSTU45、CsRPM1、CFHTF2等抗茶炭疽病、茶轮斑病等病害的抗性基因[29-33],鉴定出N-Feruloylputrescine、花色素苷-3-O-半乳糖苷等茶树抗炭疽病的内源次生代谢物[34-36]和抗茶尺蠖的丝氨酸蛋白酶抑制剂[37]。这为茶树抗病虫品种选育研究奠定了基础。
3 茶树病虫害化学生态防控研究
通过转录组、代谢组分析,明确了茶小绿叶蝉为害可激活茶树体内的茉莉酸、脱落酸信号通路,促进苯丙烷类化合物、黄酮类化合物、萜类化合物的合成和亚麻酸的代谢[38];六斑叶螨(Eotetranychus sexmaculatus)为害可激活茶树体内的茉莉酸、水杨酸信号通路,促进苯丙烷类化合物、黄酮类化合物的合成[39];茶蚜(Toxoptera aurantii)为害可激活茶树体内的茉莉酸信号通路,促进黄酮类化合物的合成[40]。
灰茶尺蠖为害后,茶树会大量释放苯乙腈,驱避灰茶尺蠖取食,抑制其生长[41]。明确了茶树体内的光信号转录因子CsPIF1、茉莉酸信号转录因子CsMYC2可激活苯乙腈的合成。这样,在生物、非生物因素共同调控下,茶树通过释放苯乙腈抵御灰茶尺蠖的为害。从茶小绿叶蝉为害诱导的茶树挥发物中,鉴定出芳樟醇、水杨酸甲酯、(E)-2-己烯醛、紫苏烯、法尼烯的混合物对叶蝉卵寄生蜂叶蝉三棒缨小蜂(Stethynium empoascae)和微小裂骨缨小蜂(Schizophragma parvula)具强引诱活性[42]。这个混合物,可通过招引寄生蜂,抑制田间叶蝉种群的增长。炭疽病为害可诱导茶树释放大量的香叶醇,而香叶醇可破坏炭疽病病原菌的菌丝和细胞结构。其对炭疽病病原菌的最小抑菌、杀菌质量浓度分别为0.5、1.0 mg/L[43]。
茉莉酸甲酯(MeJA)是茶树体内调控防御反应的重要信号分子。但MeJA有(-)-epi-MeJA、(-)-MeJA、(+)-MeJA、(+)-epi-MeJA 共4种立体异构型,不同的立体异构型具有不同的生物活性。Luo等[44]建立了一种气助液液分配-对映体选择性气相串联质谱的MeJA立体异构型测定方法,避免了常规测定方法的高温浓缩和复杂操作。测定显示,茶树体内主要是(+)-MeJA,且茶尺蠖取食或机械损伤30 s后,(+)-MeJA含量就有显著提升。
对茶小绿叶蝉的多个化学感受蛋白进行了基因鉴定、表达谱分析、反向功能验证或3D结构解析,其中包括气味结合蛋白EonuOBP43,化学感受蛋白EonuCSP4、EonuCSP 6-1、EonuCSP6-2,味觉受体EonuGR1,离子型受体EonuIR25a等[45-49]。
早在1994年就鉴定出茶毛虫(Euproctis pseudoconspersa)信息素组分,但对其主成分的手性结构一直未明确。Li等[50]通过嗅觉电生理和田间诱捕试验,明确茶毛虫性信息素主成分10,14-二甲基十五醇异丁酸酯存在明显的手性活性差异,R体是关键组分,次要组分14-甲基十五醇异丁酸酯可显著提高其生物活性。这为发展高效的茶毛虫性信息素防控技术奠定了基础。
4 茶树害虫物理防控研究
茶小绿叶蝉是我国茶树重要害虫,至今缺乏高效的化学农药替代防治技术。叶蝉、粉虱等小型刺吸害虫利用振动信号进行两性求偶通讯,利用振动信号干扰其交配,进而达到控制田间种群,是当前国际刺吸害虫绿色防控技术的研究热点。目前,已对茶小绿叶蝉的求偶振动通讯有了较为详尽的认识[51-52]。其求偶通讯行为具有高度保守的模式,包括5个阶段:(1)召唤阶段,雄虫释放召唤信号(MCaS),搜索潜在的交配对象;(2)识别阶段,雌虫感知到MCaS后,释放回应信号(FS1);(3)定位阶段,雄虫感知到FS1信号后,发出定位信号(McoS),与雌虫的回应信号(FS2)形成定位二重奏,定位雌虫栖息的叶片;(4)求爱阶段,雄虫和雌虫距离5 mm后,连续发出MCoS、FS2构成求爱二重奏,并尝试与雌虫交尾;(5)交尾阶段,雌虫若接受雄虫求爱,则进入交尾阶段。当存在多只雄虫时,雄虫之间存在求偶竞争行为。竞争策略有两种:(1)竞争雄虫感知MCaS后,释放竞争信号,干扰已建立的求偶通讯并伺机与雌虫建立通讯;(2)竞争者感知MCaS后,会释放干扰脉冲掩盖MCaS,同时对求偶雄虫进行驱赶。
此外,利用3D显微和X射线显微断层扫描技术研究显示,茶小绿叶蝉成虫复眼的分辨率较低[53]。即使在30 cm的距离内,也不能区分纯黄和黄红相间的两种图案。这在一定程度上解释了为什么黄红双色诱虫板对叶蝉的引诱活性与黄色诱虫板相当。
5 茶树害虫化学防控研究
国内外对茶树主要害虫的抗药性开展了系列研究。目前我国浙江和河南省7个茶园的灰茶尺蠖、茶尺蠖种群对不同农药已产生抗性。其中,大部分地区的尺蠖对联苯菊酯产生了中高等抗性,杭州地区茶尺蠖对苦参碱的抗性达中等水平[54]。印度茶园重要害虫咖啡小爪螨(Oligonychus coffeae)已对三氯杀螨醇、乙硫磷、甲氰菊酯、唑螨酯、喹螨醚、克螨特产生了不同程度的抗性,生产上不宜再使用乙硫磷、甲氰菊酯防治咖啡小爪螨;高抗种群中,总酯酶、谷胱甘肽S-转移酶等解毒酶活性高[55]。日本广泛使用虫酰肼防治茶园重要害虫茶小卷叶蛾(Adoxophyes honmai),目前茶小卷叶蛾已产生明显抗性。研究发现,抗性产生的原因是茶小卷叶蛾蜕皮激素受体位点上等位基因发生了突变;同时这一抗性的产生不会增加茶小卷叶蛾的生存成本,且无选择压力下抗性也可无衰减遗传[56]。这些研究结果可为预测抗药性发展趋势、开展抗药性治理提供科学依据。
此外,研究发现,常规方法喷施化学农药对茶小绿叶蝉成虫的防治效果并不理想。这与叶蝉成虫主要在茶梢中部活动、较难与喷施药液接触有很大关系[57]。因此,可通过改进施药技术、增强药液的穿透性,提高化学农药对茶小绿叶蝉种群的防治效果。
6 茶树智慧植保研究
随着人工智能技术的快速发展,茶树病虫害的快速、精准识别成为了各国的研究热点。对迭代法和卷积神经网络等深度学习方法进行了优化、结合,基于病斑、为害状的颜色、形状、大小、高光谱、密度等特征,建立了IEM-ViT、TeaDiseaseNet、CBAM-TealeafNet、TSBA-YOLO、YOLO-Tea、YOLOv5-CBM等多种茶轮斑病病症、茶褐斑病病症、茶煤病病症、红蜘蛛为害状、茶角盲蝽为害状等病虫害的快速精准识别技术[58-70]。此外,还利用性诱、高压电网、红外传感、4G无线传输等技术,提出灰茶尺蠖、茶尺蠖远程监测设备[71],田间计数准确率达100%。监测数据可作为预判下一代幼虫发生时间、发生量的依据。这些技术的研发为我国茶园智慧植保奠定了基础。
7 结语
2023年,病虫害生物防控、害虫化学生态调控、智慧植保是茶树病虫害防控的研究热点。这一年国内外取得的主要进展包括,鉴定、挖掘出一批茶树主要病虫害的高效微生物防控资源和天敌昆虫,解析了我国茶园重大害虫茶小绿叶蝉的求偶振动通信,鉴定出高效调控茶树-灰茶尺蠖、茶树-茶小绿叶蝉-寄生蜂间互作关系的化学信息,建立了茶树病虫害快速识别的多种模型。但目前的研究主要还是聚焦在茶树病虫害生物防控资源的挖掘和三营养级化学、物理通信信息的鉴定。今后要加强这些生物资源、通信信息在茶树植保方面的应用技术研究,特别是茶树吸汁害虫、茶树病害的高效绿色防控技术研发。
参考文献
[1] LI J Y, SHI L Q, CHEN W, et al. Environmental heterogeneity drives population genetic divergence of a key agricultural pest, Empoasca onukii[J]. Entomologia Generalis, 2023, 43: 305-313.
[2] 陈世春, 江宏燕, 廖姝然, 等. 基于COI基因解析我国茶网蝽种群遗传多样性和遗传结构[J]. 茶叶科学, 2023, 43(6): 795-805.
[3] ZHANG F G, CAI X M, JIN L M, et al. Activity patterns, population dynamics, and spatial distribution of the stick tea thrips, Dendrothrips minowai, in tea plantations[J/OL]. Insects, 2023, 14(2): 152. https://doi.org/10.3390/insects14020152.
[4] 刘梦圆, 王枫荻, 赵亚津, 等. 茶园黑刺粉虱越冬虫态及空间分布型研究[J]. 环境昆虫学报, 2023, 45(1): 73-82.
[5] LIAO Y C, LIU F L, RUGMAN-JONES P F, et al. The Euwallacea fornicatus species complex (Coleoptera: Curculionidae); emerging economic pests of tea in Taiwan[J/OL]. Crop Protection, 2023, 168: 106226. https://doi.org/10.1016/j.cropro.2023.106226.
[6] WU X Z, ZHOU C H, LI X F, et al. Genome-wide identification and immune response analysis of mitogen-activated protein kinase cascades in tea geometrid, Ectropis grisescens Warren (Geometridae, Lepidoptera)[J/OL]. BMC Genomics, 2023, 24(1): 344. https://doi.org/10.1186/s12864-023-09446-7.
[7] ZHANG F M, CHEN Y J, ZHAO X C, et al. Antennal transcriptomic analysis of carboxylesterases and glutathione S-transferases associated with odorant degradation in the tea gray geometrid, Ectropis grisescens (Lepidoptera, Geometridae)[J/OL]. Frontiers in Physiology, 2023, 14: 1183610. https://doi.org/10.3389/fphys.2023.1183610.
[8] YANG F S, LI Y J, GAO M Y, et al. Comparative expression profiles of carboxylesterase orthologous CXE14 in two closely related tea geometrid species, Ectropis obliqua Prout and Ectropis grisescens Warren[J/OL]. Frontiers in Physiology, 2023, 14: 1194997. https://doi.org/10.3389/fphys.2023.1194997.
[9] 郑世仲, 周子维, 陈晓慧, 等. 拮抗炭疽病的茶树内生菌筛选、鉴定及培养条件优化[J]. 茶叶科学, 2023, 43(2): 205-215.
[10] 张玉丹, 谭琳, 任佐华, 等. 茶炭疽病拮抗链霉菌的筛选鉴定与拮抗能力测定[J]. 中国生物防治学报, 2023, 39(3): 646-656.
[11] KOLANDASAMY M, MANDAL A K A, BALASUBRAMANIAN M G, et al. Multifaceted plant growth-promoting traits of indigenous rhizospheric microbes against Phomopsis theae, a causal agent of stem canker in tea plants[J/OL]. World Journal of Microbiology and Biotechnology, 2023, 39: 237. https://doi.org/10.1007/s11274-023-03688-z.
[12] PANDEY A K, SAMOTA M K, TANTI A J, et al. Trichoderma reesei induces defense-related biochemical markers associated with resistance to Fusarium dieback in tea crop[J/OL]. Biological Control, 2023, 180: 105200. https://doi.org/10.1016/j.biocontrol.2023.105200.
[13] XU G X, YING F, WU H M, et al. Biocontrol potential of two deep-sea microorganisms against gray blight disease of tea[J/OL]. Egyptian Journal of Biological Pest Control, 2023, 33: 53. https://doi.org/10.1186/s41938-023-00701-3.
[14] CHEN W L, YE T, SUN Q Y, et al. Arbuscular mycorrhizal fungus alleviates anthracnose disease in tea seedlings[J/OL]. Frontiers in Plant Science, 2022, 13: 1058092. https://doi.org/10.3389/fpls.2022.1058092.
[15] RAJENDRAN K, PONMURUGAN P, GNANAMANGAI B M, et al. Bioefficacy of lecanoric acid produced by Parmotrema austrosinense (Zahlbr.) Hale against tea fungal pathogens[J/OL]. Horticulturae, 2023, 9(6): 705. https://doi.org/10.3390/horticulturae9060705.
[16] YANG X J, CAO K Q, REN X L, et al. Field control effect and initial mechanism: A study of isobavachalcone against blister blight disease[J/OL]. International Journal of Molecular Science, 2023, 24(12): 10225. https://doi.org/10.3390/ijms241210225.
[17] FU N X, WANG T K, LI Q R, et al. Identification and biocontrol potential evaluation of a naturally occurring Metarhizium pingshaense isolate infecting tea weevil Myllocerinus aurolineatus Voss (Coleoptera: Curculionidae)[J/OL]. Egyptian Journal of Biological Pest Control, 2023, 33: 101. https://doi.org/10.1186/s41938-023-00749-1.
[18] 付楠霞, 罗宗秀, 李兆群, 等. 一株球孢白僵菌的分离鉴定及其对茶丽纹象甲幼虫的室内致病力测定[J]. 中国生物防治学报, 2023, 39(5): 1104-1112.
[19] ZHAO J, CHEN Y, KEYHANI N O, et al. Isolation of a highly virulent Metarhizium strain targeting the tea pest, Ectropis obliqua[J/OL]. Frontiers in Microbiology, 2023, 14: 1164511. https://doi.org/10.3389/fmicb.2023.1164511.
[20] 张燕南, 毕司进, 李悦, 等. 球孢白僵菌菌株GZGY对茶黄螨致病力及生长发育的影响[J]. 应用昆虫学报, 2023(60): 1835-1840.
[21] DEKA B, BABU A, SARKAR S, et al. Hyposidra talaca NPV (HytaNPV): A potential baculovirus for efficient control of the black inch worm, Hyposidra talaca Walker (Lepidoptera: Geometridae), a major pest of tea Camellia sinensis (Ericales: Theaceae (L.) O. Kuntze)[J/OL]. Egyptian Journal of Biological Pest Control, 2023, 33: 106. https://doi.org/10.1186/s41938-023-00760-6.
[22] 谭荣荣, 陈勋, 黄丹娟, 等. 灰茶尺蠖核型多角体病毒对两种尺蠖的致病性[J]. 中国生物防治学报, 2023, 39(3): 684-689.
[23] 张凤阁, 蔡晓明, 修春丽, 等. 东亚小花蝽对茶棍蓟马成虫的捕食功能[J]. 植物保护学报, 2023, 50(3): 668-675.
[24] 龚雪娜, 罗梓文, 玉香甩, 等. 叉角厉蝽对于不同虫龄茶谷蛾幼虫的捕食功能反应[J]. 中国生物防治学报, 2023, 39(5): 1066-1075.
[25] 江宏燕, 陈世春, 程令, 等. 军配盲蝽和南方小花蝽对茶网蝽若虫的捕食作用[J]. 环境昆虫学报, 2023, 45(3): 754-760.
[26] 唐美君, 王志博, 张欣欣, 等. 茶园新天敌绿点益蝽的初步研究[J]. 植物保护, 2023, 49(3): 231-235.
[27] TAN W W, ZHANG N, WANG J Q, et al. Fumigant activity and transcriptomic analysis of two plant essential oils against the tea green leafhopper, Empoasca onukii Matsuda[J/OL]. Frontiers in Physiology, 2023, 14: 1217608. https://doi.org/10.3389/fphys.2023.
1217608.
[28] 周孝贵, 唐璞, 吴琼, 等. 茶尺蠖和灰茶尺蠖幼虫两种共有寄生蜂的鉴定[J]. 中国生物防治学报, 2023, 39(1): 1-9.
[29] LU M Q, ZHAO Y F, FENG Y Y, et al. 2,4-Dihydroxybenzoic acid, a novel sa derivative, controls plant immunity via UGT95B17-mediated glucosylation: A case study in Camellia sinensis[J/OL]. Advanced Science, 2024, 11(7): 2307051. https://doi.org/10.1002/advs.202307051.
[30] JIANG H, ZHANG M T, YU F, et al. A geraniol synthase regulates plant defense via alternative splicing in tea plants[J/OL]. Horticulture Research, 2023, 10(10): uhad184. https://doi.org/10.1093/hr/uhad184.
[31] LV W Y, JIANG H, CAO Q H, et al. A tau class glutathione S-transferase in tea plant, CsGSTU45, facilitates tea plant susceptibility to Colletotrichum camelliae infection mediated by jasmonate signaling pathway[J]. The Plant Journal, 2023, 117(5): 1356-1376.
[32] LV W Y, XU Y J, JIANG H, et al. An NBS-LRR-encoding gene CsRPM1 confers resistance to the fungus Colletotrichum camelliae in tea plant[J]. Beverage Plant Research, 2023, 3: 109-115.
[33] ZHANG C K, ZHOU Z W, GUO T L, et al. CFHTF2 is needed for vegetative growth, conidial morphogenesis and the osmotic stress response in the tea plant anthracnose (Colletotrichum fructicola)[J/OL]. Genes 2023, 14(12): 2235. https://doi.org/10.3390/genes14122235.
[34] WANG W Z, XIE X C, LV Y Y, et al. Identification and profile of phenolamides with anthracnose resistance potential in tea (Camellia sinensis)[J/OL]. Horticulture Research, 2023, 10(9): uhad154.
https://doi.org/10.1093/hr/uhad154.
[35] LIU S A, ZHANG S H, HE S N, et al. Tea plant (Camellia sinensis) lipid metabolism pathway modulated by tea field microbe (Colletotrichum camelliae) to promote disease[J/OL]. Horticulture Research, 2023, 10(4): uhad028. https://doi.org/10.1093/hr/uhad028.
[36] LI T T, WANG S R, SHI D D, et al. Phosphate deficiency induced by infection promotes synthesis of anthracnose-resistant anthocyanin-3-O-galactoside phytoalexins in the Camellia sinensis plant[J/OL]. Horticulture Research, 2023, 10: uhad222. https://doi.org/10.1093/hr/uhad222.
[37] YE M, LIU C, LI N, et al. A constitutive serine protease inhibitor suppresses herbivore performance in tea (Camellia sinensis)[J/OL]. Horticulture Research, 2023, 10: uhad178. https://doi.org/10.1093/hr/uhad178.
[38] QIAO D H, YANG C, GUO Y, et al. Transcriptome and co-expression network analysis uncover the key genes mediated by endogenous defense hormones in tea plant in response to the infestation of Empoasca onukii Matsuda[J]. Beverage Plant Research, 2023, 3: 29-41.
[39] WANG X P, XIANG Y J, SUN M S, et al. Transcriptomic and metabolomic analyses reveals keys genes and metabolic pathways in tea (Camellia sinensis) against six-spotted spider mite (Eotetranychus Sexmaculatus) [J/OL]. BMC Plant Biology, 2023, 23(1): 638. https://doi.org/10.1186/s12870-023-04651-8.
[40] 刘艳丽, 唐海燕, 万晴, 等. 茶树新梢响应茶蚜取食的代谢物变化研究[J]. 植物科学学报, 2023, 41(5): 657-667.
[41] QIAN J, LIAO Y, JIAN G, et al. Light induces an increasing release of benzyl nitrile against diurnal herbivore Ectropis grisescens Warren attack in tea (Camellia sinensis) plants[J]. Plant Cell and Environment, 2023, 46(11): 3464-3480.
[42] WANG M, HAN S, WU Y, et al. Tea green leafhopper-induced synomone attracts the egg parasitoids, mymarids to suppress the leafhopper[J]. Pest Management Science, 2023, 79(10): 3785-3795.
[43] CHEN W, LIU H F, CHEN Y, et al. Geraniol: A potential defense-related volatile in "Baiye No. 1" induced by Colletotrichum camelliae[J/OL]. Agriculture, 2023, 13(1): 15. https://doi.org/10.3390/agriculture13010015.
[44] LUO Z F, ZHU X, X LI H, et al. Air-assisted liquid-liquid microextraction and enantioselective gas chromatography-tandem mass spectrometry quantification of methyl jasmonate stereoisomers in tea (Camellia sinensis L.)[J]. Reproduction and Breeding, 2023, 3(1): 17-25.
[45] LUN X Y, XU X X, ZHANG X Z, et al. Identification and expression profiles of candidate chemoreceptor genes in the tea leafhopper, Empoasca onukii Matsuda (Hemiptera: Cicadellidae)[J]. Phytoparasitica, 2023, 51(5): 1073-1085.
[46] LUN X Y, XU X X, ZHANG Y, et al. An antennae-enriched odorant-binding protein EonuOBP43 mediate the behavioral response of the tea green leafhopper, Empoasca onukii Matsuda to the host and nonhost volatiles[J]. Journal of Agricultural and Food Chemistry, 2023, 71(50): 20000-20010.
[47] ZHANG R R, LUN X Y, ZHANG Y, et al. Characterization of ionotropic receptor gene EonuIR25a in the tea green leafhopper, Empoasca onukii Matsuda[J/OL]. Plants, 2023, 12(10): 2034. https://doi.org/10.3390/plants12102034.
[48] ZHANG L W, ZHAO M X, AIKEREMU F, et al. Involvement of three chemosensory proteins in perception of host plant volatiles in the tea green leafhopper, Empoasca onukii[J/OL]. Frontiers in Physiology, 2023, 13: 1068543. https://doi.org/10.3389/fphys.2022.1068543.
[49] ZHANG R R, LUN X Y, ZHAO Y H, et al. RNAi-mediated interference with EonuGR1 affects the recognition of phenylacetaldehyde by Empoasca onukii Matsuda (Hemiptera: Cicadellidae)[J/OL]. Agronomy 2023, 13(9): 2221. https://doi.org/10.3390/agronomy13092221.
[50] LI Z Q, YUAN T T, CUI S W, et al. Development of a high-efficiency sex pheromone formula to control Euproctis pseudoconspersa[J]. Journal of Integrative Agriculture, 2023, 22(1): 195-201.
[51] ZHANG H N, BIAN L, CAI X M, et al. Vibrational signals are species-specific and sex-specific for sexual communication in the tea leafhopper, Empoasca onukii[J]. Entomologia Experimentalis et Applicata, 2023, 171(4): 277-286.
[52] SHAN Y, ZHOU X S, CAI X M, et al. Mating and post-copulation behavior in the tea leafhopper, Empoasca onukii (Hemiptera: Cicadellidae)[J/OL]. Frontiers in Plant Science, 2023, 14: 1273718. https://
doi.org/10.3389/fpls.2023.1273718.
[53] TAN C, CAI X M, LUO Z X, et al. Visual acuity of Empoasca onukii (Hemiptera, Cicadellidae)[J/OL]. Insects, 2023, 14(4): 370. https://doi.org/10.3390/insects14040370.
[54] 陈雨思, 周孝贵, 曾维健, 等. 不同茶园灰茶尺蠖和茶尺蠖对5种杀虫剂的抗药性监测[J]. 环境昆虫学报, 2023, 45(4): 1103-1110.
[55] PATRA B, HATH T K. Resistance status and activity of detoxifying enzymes in Oligonychus coffeae (Nietner) (Acari: Tetranychidae) on tea[J/OL]. Crop Protection, 2023, 167: 106201. https://doi.org/10.1016/j.cropro.2023.106201.
[56] LEE T M, SMITH R A, NELSON W A, et al. No life-history cost of tebufenozide resistance in the smaller tea tortrix moth[J]. Pest Management Science, 2023, 79(7): 2581-2590.
[57] 邹佳婷, 郭宇航, 边磊, 等. 化学农药对茶小绿叶蝉成虫的防效及其原因探究[J].茶叶科学, 2023, 43(4): 544-552.
[58] SAIKAT D, NITIN G. A novel approach for the detection of tea leaf disease using deep neural network[J]. Procedia Computer Science, 2023, 218: 2273-2286.
[59] SOEB M J A, JUBAYER M F, TARIN T A, et al. Tea leaf disease detection and identification based on YOLOv7 (YOLO-T)[J/OL]. Scientific Reports, 2023, 13: 6078. https://doi.org/10.1038/s41598-023-33270-4.
[60] XU Y, MAO Y L, LI H, et al. A deep learning model for rapid classification of tea coal disease[J/OL]. Plant Methods, 2023, 19(1): 98. https://doi.org/10.1186/s13007-023-01074-2.
[61] PANDIAN J A, NISHA S N, KANCHANADEVI K, et al. Grey blight disease detection on tea leaves using improved deep convolutional neural network[J/OL]. Computational Intelligence and Neuroscience, 2023, 7876302. https://doi.org/10.1155/2023/7876302.
[62] WANG Y K, XU R J, BAI D, et al. Integrated learning-based pest and disease detection method for tea leaves[J/OL]. Forests, 2023, 14(5):1012. https://doi.org/10.3390/f14051012.
[63] XUE Z Y, XU R J, BAI D, et al. YOLO-Tea: A tea disease detection model improved by YOLOv5[J/OL]. Forests, 2023, 14(2): 415. https://doi.org/10.3390/f14020415.
[64] LIN J, BAI D, XU R J, et al. TSBA-YOLO: An improved tea diseases detection model based on attention mechanisms and feature fusion[J/OL]. Forests, 2023, 14(3): 619. https://doi.org/10.3390/f14030619.
[65] ZHANG J H, GUO H L, GUO J, et al. An information entropy masked vision transformer (IEM-ViT) model for recognition of tea diseases[J/OL]. Agronomy, 2023, 13(4): 1156. https://doi.org/10.3390/agronomy13041156.
[66] ZHAN B S, LI M, LUO W, et al. Study on the tea pest classification model using a convolutional and embedded iterative region of interest encoding transformer[J/OL]. Biology, 2023, 12(7): 1017. https://doi.org/10.3390/biology12071017.
[67] YANG Z J, FENG H L, RUAN Y P, et al. Tea tree pest detection algorithm based on improved yolov7-tiny[J/OL]. Agriculture, 2023, 13(5): 1031. https://doi.org/10.3390/agriculture13051031.
[68] SUN Y G, WU F, GUO H P, et al. TeaDiseaseNet: Multi-scale selfattentive tea disease detection[J/OL]. Frontiers in Plant Science, 2023, 14: 1257212. https://doi.org/10.3389/fpls.2023.1257212.
[69] 陈禹, 吴雪梅, 张珍, 等. 基于改进YOLOv5s的自然环境下茶叶病害识别方法[J].农业工程学报, 2023, 39(24): 185-194.
[70] 黄铝文, 关非凡, 谦博, 等. 基于2D DWT与MobileNetV3融合的轻量级茶叶病害识别[J]. 农业工程学报, 2023, 39(24): 207-214.
[71] 胡锦召, 陈华才, 季慧华, 等. 基于红外传感器的灰茶尺蠖智能监测装置的设计[J]. 现代电子技术, 2023, 46(18): 157-161.