摘要:人类活动和气候环境对淡水生态系统的影响越来越显著。细菌通常占淡水生态系统中微生物总量的90%以上,淡水生态系统中细菌群落多样性和群落结构的改变显著影响其在生物地球化学过程和生态动力学中的作用。通过对比不同淡水生态系统(河流、湖泊等)、不同环境介质(水体、沉积物、河岸土壤等)中细菌群落多样性和结构,分析了影响细菌群落结构的物理化学因素,介绍了现有研究细菌群落的分子生物学方法。已有的研究表明,未来还需对多种淡水生态系统和其他环境介质中的细菌群落展开系统测量和研究,为环境监测和保护淡水生态系统提供基础信息。
关键词:淡水生态系统;细菌群落;多样性;群落结构
中图分类号:Q938.1+1;X176 文献标识码:A
文章编号:0439-8114(2024)09-0073-05
DOI:10.14088/j.cnki.issn0439-8114.2024.09.013 开放科学(资源服务)标识码(OSID):
Research progress on diversity and structure of bacterial communities
in freshwater ecosystems
ZHANG Li-ping1, LYU Hui2, TANG Jia-ling3, WANG Gui-chun4, LYU Bin1
(1.School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; 2.Department of Clinical Laboratory, Wuhan Wuchang Hospital, Wuhan 430063, China; 3. Department of Health Monitoring, Songjiang District Center for Disease Control and Prevention, Shanghai 201600, China; 4. Institute of Agricultural Economics and Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China)
Abstract: Human activities, climate and environment affected freshwater ecosystems significantly. More than 90% of microorganisms in freshwater were bacteria. Changes in the diversity and structure of bacterial communities in freshwater ecosystems affected the roles of bacteria in the biogeochemical process and eco-dynamics. In this review, the diversity and structure of bacterial communities in different freshwater ecosystems (rivers, lakes, etc.) and different environmental media (water bodies, sediments, riparian soils, etc.) were compared. The physicochemical factors affecting bacterial community diversity and structure were analyzed. Molecular biological methods for studying bacterial communities were introduced. Present studies indicated that the diversity and structure of bacterial communities in freshwater ecosystems and other environmental media should be studied systematically to provide necessary information for environmental monitoring and freshwater ecosystem protection.
Key words: freshwater ecosystems; bacteria community; diversity; community structure
淡水生态系统极具多样性和生命力,但同时也极易受到人类活动和环境因素的影响[1]。近50年来,人类对全球淡水资源的利用呈持续增长趋势[2],人类活动所导致的水污染、河流改道和流量调节、过度开发生物资源、引进外来物种、气候变化等均会对淡水生态系统造成不良影响。
淡水生态系统中,微生物无处不在,数量繁多,而细菌通常占微生物总量的90%以上[3]。淡水生态系统的退化导致系统中细菌多样性快速丧失、群落结构改变,并影响其在生物地球化学过程和生态动力学中的作用[4]。因此,了解不同淡水生态系统、不同环境介质中细菌群落多样性和结构的异同,可以为淡水生态系统保护提供基础信息,利于相关部门对淡水生态系统进行准确的监测。本文对目前国内外淡水生态系统细菌群落多样性和结构及引起其变化的影响因素和相关研究进展进行了归纳。
1 细菌群落多样性和结构
1.1 不同淡水生态系统中的细菌群落多样性和结构
淡水生态系统包括流动水和静水两个水生生态系统。前者主要有河流、溪流和水渠等,后者有湖泊、池塘、水库等[5]。Zwart等[6]发现淡水中优势菌群是α-变形菌、β-变形菌、γ-变形菌、噬细胞-黄杆菌-拟杆菌组、蓝细菌、放线菌、疣微菌、绿色非硫细菌等,但不同的生态系统具有异质性[7]。
同一河流、湖泊、水库细菌群落组成和多样性是否一致,不同的研究结果并不一致。内陆淡水湖博斯腾湖,河流中的优势菌为变形菌,湖泊中则是疣微菌,且河流的细菌群落α多样性也显著高于湖泊[8]。但长江河流区域和湖库区域两水体中的优势菌均为变形菌,α多样性结果也保持一致[9],与博斯腾湖明显不同。Ren等[10,11]的研究结果显示河流和湖泊水体细菌群落α多样性存在显著差异,但其沉积物中细菌群落α多样性无显著差异。目前对单独的河流、湖泊、水库的细菌群落的研究较多,而对河流-湖泊、河流-水库、湖泊-水库等连通生态系统细菌群落的研究并不充分,这使得河流、湖泊、水库细菌群落多样性和群落结构难以直接比较,不利于人们了解不同淡水生态系统中细菌群落的结构和多样性,因此在未来研究中需要给予以上研究方向更多关注。
1.2 不同环境介质中的细菌多样性和结构
淡水生态系统中的微生物存在于水体、沉积物、河岸土壤等环境介质中[12]。淡水水体在淡水生态系统中占据体积较大,具有供水、运输等服务功能[13,14]。沉积物在底栖生态系统中具有重要作用,能在富营养化的水生生态系统中分解有机物并参与主要元素的生物地球化学循环[15]。相较于水体中自由生存91a8b308adff39f57fee6fee9fefbd1c的浮游微生物,生物膜广泛附着于岩石、矿物和有机碎片,代表了微生物间更高水平的组织形式,具有更稳定的微环境,对于营养物质的利用、循环等更具协同作用[16]。河岸土壤与淡水水体和沉积物紧密相连,都是淡水生态系统的重要部分,但对其的研究相较于上述3种环境介质要少很多,且对细底栖有机物、粗底栖有机物等介质的研究仍然存在大量空白,未来研究需更加深入。
水体、沉积物、生物膜在空间上紧密联系,但又各自保持相对特殊的微生物群落。淡水生态系统中,各环境介质的优势菌均是变形菌门、放线菌门、拟杆菌门、疣微菌门等典型淡水细菌,但具体组成上有一定区别。水体中拟杆菌门和放线菌门的相对丰度高于沉积物和生物膜,疣微菌门在不同环境介质中的相对丰度差距不大,但是其变异度在水体中大于沉积物和生物膜;厚壁菌门、酸杆菌门、绿弯菌门的相对丰度由高到低依次为水体、生物膜和沉积物,蓝菌门在生物膜中的相对丰度明显大于其他介质[17]。
各环境介质的细菌群落在总体组成和多样性上存在显著差异。α多样性包括丰富度和均匀度,水体中的浮游细菌丰富度和均匀度均远低于生物膜和沉积物中的,生物膜的丰富度和均匀度略低于沉积物[18,19]。从β多样性可看出,3种主要环境介质的群落结构存在明显的界限。3种主要的环境介质的群落总体上可分为浮游生物群落和底栖生物群落两种,底栖生物群落多样性和分化程度高于浮游生物群落,但底栖生物群落的功能基因多样性低于浮游生物群落[17,20]。这可能是因为底栖生物群落处于更为稳定的生态环境中,稳定的生态环境往往具有较低的多样性,也可能是因为浮游生物为利用相对匮乏的有机质和营养物质而使基因功能增强。
不同环境介质中的细菌群落在组成、多样性上存在异同,但同时对多种环境介质的研究较少,难以直观比较不同环境介质的细菌群落。
2 细菌群落结构的影响因素
由于细菌群落具有较高的物种多样性和遗传多样性,极易受环境因素的影响[21]。目前研究集中于物理因素、化学物质、人为活动指标等影响因素与细菌群落结构的相关性。但影响因素的监测频率和区域存在差异,其中物理化学指标中pH、温度、溶解氧、营养物质的监测频率较高、范围较广,而总有机碳、重金属、化学需氧量、盐度、硫酸盐等指标监测较少,例如总有机碳测量的占比在澳大利亚最高,南极洲化学需氧量监测的比例高于其他地区[22]。
土壤细菌群落的主要影响因素是pH和有机质,但由于淡水测量的物理化学因素等存在异质性,目前对淡水细菌群落结构的主要影响因素仍未形成共识[23,24]。有研究表明,微生物群落组成的主要环境决定因素是盐度,而不是温度、pH或其他的物理和化学因素[25],即使在盐度较低的水体中该结论也成立,但在测量淡水环境因素时通常不测定盐度。温度是影响淡水细菌群落结构的重要因素。温度不仅影响细菌的生长和代谢,同时也影响水质。当温度降低,细菌的生长速度会放缓[26,27],同时当温度高于4 ℃时,温度降低会使水的密度升高[28],进而使得水体循环变缓,最终导致生物的扩散和营养物质的运输受到阻碍,优势菌受到一定限制,利于其他菌群生长繁衍,这也可能是秋冬季样品的细菌群落组成要比春夏季更复杂的原因[27]。pH是影响细菌群落结构的另一主要因素,但仅在较窄范围对群落影响较大,因此监测频率高。除温度、pH以外,无机盐和营养物质也是影响细菌群落的重要因素[29]。随着营养物质浓度的增加,细菌的数量和多样性都会随之增加[30,31],但当营养物质过多时,限制因素由氮、磷等营养物质变为碳元素[32]。有机碳早前就被确定为细菌群落结构形成的重要影响因素,有机碳浓度增加有助于水生细菌的生长,另外叶绿素的增加可能会促使浮游植物产生蛋白质类有色可溶性有机物,从而促进可利用此物质的物种的生长,使该环境中细菌群落的多样性增加[32]。环境因素之间具有相互作用关系,共同作用于细菌群落,例如温度升高会增加磷浓度、电导率,降低pH和氧饱和度[33]。
时空因素也是影响细菌群落的主要因素。时间上主要有季节和水期等,季节导致的群落变化主要与温度的变化有关,而水期则可能与水的流速和流量有关[21,27]。研究显示空间因素与细菌群落组成变化呈显著相关,如细菌的总丰度随纬度下降,但也有研究表明空间因素仅产生边际效益,与细菌群落的变化关联性很低。
除了以上环境因素,细菌群落变化还与人类的活动有关,人为干扰程度对细菌群落组成有显著影响。人类对于淡水的影响方式多样,主要包括污水排放、工程项目的实施、土地利用等。污染物的存在造成淡水水质变差,优势菌群也会随污水的处理与否而发生变化,这种变化可能与污染物过度富集有关,导致菌落结构发生改变、多样性逐渐丧失等问题[34]。抗生素类污染物可导致抗生素抗性基因丰度增强,致病菌或潜在致病菌增加,威胁到公共健康[35]。大坝对菌落结构的影响很复杂。已发现青藏高原雅鲁藏布江的藏木大坝对细菌生物量和多样性具有负面影响[36],堤坝建设对日本冲绳亚热带滩涂生物群的多样性也造成了不利影响[37],而青藏高原拉萨河的研究则表明大坝建设会增加细菌丰度和多样性,且优势菌种会发生变化[38],也有研究表明造成细菌群落组成差异的是水库梯级和水温,而不是大坝的存在[39]。淡水周围的土地利用类型也会对细菌结构产生不同影响,Xun等[40]在湄公河下游 7个地点调查土地利用与微生物群落结构的关系,结果显示无论土地利用类型如何,细菌群落组成在湄公河下游持续保留其特征,但Cloutier等[41]对8个不同的淡水沙滩区域的微生物群落的调查结果显示,土地利用类型不同其群落结构存在差异。
淡水生态系统细菌群落结构的影响因素众多,在进行相关研究时应根据研究目的尽可能考虑可能存在的混杂因素。
3 研究细菌群落多样性和结构的方法
最初通过显微镜观察研究细菌群落结构,但此方法只能提供细菌组成信息,细菌多样性和功能不得而知。随着分子生物学技术在微生物生态学中的应用,研究方法由相对传统的培养法逐渐转变为能够更好挖掘细菌群落多样性和结构的方法,如各种组学方法等[42]。
细菌群落多样性和结构的研究方法主要用于调查群落丰度、群落组成和多样性。实时荧光定量PCR广泛应用于细菌群落丰度的测定,能简单、快速地确定微生物丰度,但无法准确定量[43]。微液滴数字PCR法可以通过绝对定量的DNA片段准确且较小误差地分析环境DNA,能更加准确地测定细菌群落的丰度,尤其是低浓度环境DNA[44],在丰度测定中具有高检测灵敏度、高定量精确度、高耐受性的特性,但这种定量测定丰度的方法在淡水细菌丰度测定中运用较少,今后的研究中可考虑增加其应用。变性梯度凝胶电泳和末端限制性片段长度多态性属于早期应用于细菌组成分析的方法,具有简单、便利、低廉等优势[45],但是能用二者分析的片段集中在500 bp以下,500 bp以上的片段分析精度不足。脂肪酸生物标记法、自动核糖体内间隔分析这些方法目前在研究中较少使用,因为它们只能提供定性或半定量的分析,而且经常严重低估微生物多样性[42]。
扩增子高通量测序目前在细菌群落组成和多样性研究中应用广泛。扩增子高通量测序摒弃了一代测序通量低、获得大量序列成本高的弊端,不仅大幅降低成本,实现高通量测序,而且大幅提速,保持高准确性。高通量测序可以挖掘不可培养细菌的物种组成和多样性,为拓宽人类对细菌的认知做出巨大贡献。当下成熟的二代测序技术共有3种,分别为“454”技术(Roche公司)、Solexa技术(Illumina公司)和SOLiD技术(ABI公司)。但是由于扩增子测序产生的操作分类单元或扩增子序列变体的分类信息仍未得到充分注释,二代测序目前主要面临的问题是解释测序数据的生态学意义。
除了淡水环境中细菌丰度、群落结构外,了解细菌功能、代谢多样性也同样重要。为此,荧光原位杂交技术、功能基因阵列、稳定同位素探针技术、宏基因组被应用于表征微生物功能谱。荧光原位杂交技术主要从单细胞水平揭示细菌的代谢活性以及不同种类细菌细胞代谢活性的差异[46]。而基于DNA或RNA的稳定同位素探针技术是研究具有特定功能的活跃微生物种群的理想工具,并越来越多地被用于研究淡水细菌[47]。功能基因阵列中GeoChip 5.0主要用于直接靶向各种功能基因,探究细菌在环境中所起到的作用[48]。宏基因组数据库的应用除了更准确地确定微生物的分类组成和相对1e21e6f345e477914988a856ecf9af46丰度外,还能全面系统地揭示微生物的功能特征,如抗生素抗性[49]、致病性[50]和生物地球化学循环。扩增子高通量测序、宏基因组和功能基因阵列通常不能揭示微生物活性的信息,其中宏转录组分析可用于确定微生物群落的基因表达和功能活动[51],但由于RNA的提取和储存比DNA更困难,且无法清晰解释转录组和功能活动之间的关联[52],因此,使用宏转录组学对河流微生物的研究较少。
4 小结与展望
由于生物学新技术、新方法的发展,淡水生态系统细菌群落多样性和结构的研究范围不断扩大、研究深度不断加深,对影响细菌群落结构的环境因素的监测越来越精确。但由于采样难度、人力、研究经费等因素的影响,较少有大范围、多生态系统、多环境介质的研究,并且因为淡水覆盖面积广,有些河流、湖泊、水库仍未被研究,未来需要对更多水域展开系统性的测量和研究。
参考文献:
[1] HE F,ZARFL C,BREMERICH V,et al. The global decline of freshwater megafauna[J]. Global chang biology, 2019, 25(11): 3883-3892.
[2] ALBERT J S, DESTOUNI G, DUKE-SYLVESTER S M, et al. Scientists? warning to humanity on the freshwater biodiversity crisis[J]. Ambio, 2021, 50(1): 85-94.
[3] HAHN M W. The microbial diversity of inland waters[J]. Current opinion in biotechnology, 2006, 17(3): 256-261.
[4] SCHMELLER D S, LOYAU A, BAO K, et al. People, pollution and pathogens—Global change impacts in mountain freshwater ecosystems[J]. Science of the total environment, 2018, 622-623: 756-763.
[5] 杨寒迪.重庆山地都市休闲农业园节约型景观规划建设综合评价研究[D].重庆:西南大学,2019.
[6] ZWART G, CRUMP B C, AGTERVELD M P K, et al. Typical freshwater bacteria: An analysis of available 16S rRNA gene sequences from plankton of lakes and rivers[J]. Aquatic microbial ecology, 2002, 28: 141-155.
[7] NEWTON R J, JONES S E, EILER A, et al. A guide to the natural history of freshwater lake bacteria[J]. Microbiology and molecular biology reviews, 2011, 75(1): 14-49.
[8] TANG X, XIE G, SHAO K, et al. Contrast diversity patterns and processes of microbial community assembly in a river-lake continuum across a catchment scale in northwestern China[J]. Environmental microbiome, 2020, 15(1): 10.
[9] 胡愈炘, 张 静, 黄 杰, 等.长江流域河流和湖库的浮游细菌群落差异[J].环境科学, 2022, 43(3): 1414-1423.
[10] REN Z, QU X, PENG W, et al. Nutrients drive the structures of bacterial communities in sediments and surface waters in the river-lake system of Poyang Lake[J]. Water, 2019, 11(5): 930.
[11] REN Z, QU X, PENG W, et al. Functional properties of bacterial communities in water and sediment of the eutrophic river-lake system of Poyang Lake, China[J]. PeerJ, 2019, 7: e7318.
[12] MANSOUR I,HEPPELL C M,RYO M, et al. Application of the microbial community coalescence concept to riverine networks[J]. Biological reviews of the Cambridge philosophical society,2018, 93(4):1832-1845.
[13] TICKNER D, OPPERMAN J J, ABELL R, et al. Bending the curve of global freshwater biodiversity loss: An emergency recovery plan[J]. Bioscience, 2020, 70(4): 330-342.
[14] PRADINAUD C, NORTHEY S, AMOR B, et al. Defining freshwater as a natural resource: A framework linking water use to the area of protection natural resources[J]. The international journal of life cycle assessment, 2019, 24(5): 960-974.
[15] BEHERA B K, CHAKRABORTY H J, PATRA B, et al. Metagenomic analysis reveals bacterial and fungal diversity and their bioremediation potential from sediments of river Ganga and Yamuna in India[J]. Frontiers in microbiology, 2020, 11: 556136.
[16] FLEMMING H C,WUERTZ S. Bacteria and archaea on earth and their abundance in biofilms[J].Nature reviews microbiology,2019,17(4): 247-260.
[17] GWEON H S, BOWES M J, MOORHOUSE H L, et al. Contrasting community assembly processes structure lotic bacteria metacommunities along the river continuum[J]. Environmental microbiology, 2021, 23(1): 484-498.
[18] WANG Y, SHENG H F, HE Y, et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags[J]. Applied & environmental microbiology, 2012, 78(23): 8264-8271.
[19] WANG L, ZHANG J, LI H, et al. Shift in the microbial community composition of surface water and sediment along an urban river[J]. The science of the total environment, 2018, 627: 600-612.
[20] EL NAJJAR P, PFAFFL M, OUAINI N, et al. Water and sediment microbiota diversity in response to temporal variation at the outlet of the Ibrahim River (Lebanon)[J]. Environmental monitoring and assessment, 2020, 192(3): 201.
[21] LIU Y, REN Z, QU X, et al. Microbial community structure and functional properties in permanently and seasonally flooded areas in Poyang Lake[J]. Science reports, 2020, 10(1): 4819.
[22] KEXIN L, JINMING H, TING L, et al. Microbial abundance and diversity investigations along rivers: Current knowledge and future directions[J]. Wiley interdisciplinary reviews:Water,2021,8(5):e1547.
[23] FIERER N,BRADFORD M A,JACKSON R B. Toward an ecological classification of soil bacteria[J]. Ecology, 2007, 88(6): 1354-1364.
[24] LI X, MENG D, LI J, et al. Response of soil microbial communities and microbial interactions to long-term heavy metal contamination[J]. Environmental pollution, 2017, 231(P1): 908-917.
[25] LOZUPONE C A, KNIGHT R. Global patterns in bacterial diversity[J]. Proceedings of the national academy of sciences of the United States of America, 2007, 104(27): 11436-11440.
[26] STALEY C, PONGSILP N, NIMNOI P, et al. Influence of physicochemical factors on bacterial communities along the Lower Mekong River assessed by Illumina Next-Generation Sequencing[J]. Water, air, & soil pollution, 2018, 229(10): 1-13.
[27] LEI Z,TINGTING S, YU C, et al. Temporal and spatial variations in the bacterial community composition in Lake Bosten, a large, brackish lake in China[J]. Scientific reports,2020,10(1): 304.
[28] CAVICCHIOLI R,RIPPLE W J,TIMMIS K N, et al. Scientists? warning to humanity: Microorganisms and climate change[J]. Nature reviews microbiology, 2019, 17(9): 569-586.
[29] PORTER J, MORRIS S A, PICKUP R W. Effect of trophic status on the culturability and activity of bacteria from a range of lakes in the English Lake District[J]. Applied environmental microbiology, 2004, 70(4): 2072-2078.
[30] STUTTER M I, GRAEBER D, EVANS C D, et al. Balancing macronutrient stoichiometry to alleviate eutrophication[J]. Science of the total environment, 2018, 634: 439-447.
[31] NEWTON R J, MCMAHON K D. Seasonal differences in bacterial community composition following nutrient additions in a eutrophic lake[J]. Environmental microbiology, 2011, 13(4): 887-899.
[32] LEI Z, YONGQIANG Z, XIANGMING T, et al. Eutrophication alters bacterial co-occurrence networks and increases the importance of chromophoric dissolved organic matter composition[J]. Limnology and oceanography, 2021, 66(6): 2319-2332.
[33] MCKEE D, ATKINSON D, COLLINGS S E, et al. Response of freshwater microcosm communities to nutrients, fish, and elevated temperature during winter and summer[J]. Limnology and oceanography, 2003, 48(2): 707-722.
[34] PENG F J, PAN C G, ZHANG N S, et al. Benthic invertebrate and microbial biodiversity in sub-tropical urban rivers: Correlations with environmental variables and emerging chemicals[J].Science of the total environment, 2020, 709: 136281.
[35] KAESEBERG T, SCHUBERT S, OERTEL R, et al. Hot spots of antibiotic tolerant and resistant bacterial subpopulations in natural freshwater biofilm communities due to inevitable urban drainage system overflows[J]. Environmental pollution, 2018, 242(Pt A): 164-170.
[36] WANG P, WANG X, WANG C, et al. Shift in bacterioplankton diversity and structure: Influence of anthropogenic disturbances along the Yarlung Tsangpo River on the Tibetan Plateau, China[J]. Science reports, 2017, 7(1): 12529.
[37] REIMER J D, YANG S Y, WHITE K N, et al. Effects of causeway construction on environment and biota of subtropical tidal flats in Okinawa, Japan[J]. Marine pollution bulletin,2015,94(1-2):153-167.
[38] TAO K, LIU Y, KE T, et al. Patterns of bacterial and archaeal communities in sediments in response to dam construction and sewage discharge in Lhasa River[J]. Ecotoxicology and environmental safety, 2019, 178: 195-201.
[39] QIUWEN C, YUCHEN C, JUN Y, et al. Bacterial communities in cascade reservoirs along a large river[J]. Limnology and oceanography, 2021, 66(12): 4363-4374.
[40] XUN W,CHAO W,PEIFANG W,et al. How bacterioplankton community can go with cascade damming in the highly regulated Lancang-Mekong River Basin[J]. Molecular ecology,2018, 27(22):4444-4458.
[41] CLOUTIER D D, ALM E W, MCLELLAN S L. Influence of land use, nutrients, and geography on microbial communities and fecal indicator abundance at Lake Michigan Beaches[J]. Applied and environmental microbiology, 2015, 81(15): 4904-4913.
[42] 高 乐. 分子生物学方法在环境微生物生态学中的应用研究进展[J]. 化工设计通讯, 2020, 46(12): 85-86.
[43] COBLE A A, FLINDERS C A, HOMYACK J A, et al. eDNA as a tool for identifying freshwater species in sustainable forestry: A critical review and potential future applications[J]. Science of the total environment, 2019, 649: 1157-1170.
[44] DOI H, UCHII K, TAKAHARA T, et al. Use of droplet digital PCR for estimation of fish abundance and biomass in environmental DNA surveys[J]. PLoS one, 2015, 10(3): e0122763.
[45] HUANG Z,XIE B, YUAN Q, et al. Microbial community study in newly established Qingcaosha Reservoir of Shanghai, China[J]. Applied microbiology and biotechnology, 2014, 98(23): 9849-9858.
[46] YOUNG A P, JACKSON D J, WYETH R C. A technical review and guide to RNA fluorescence in situ hybridization[J]. PeerJ, 2020, 8: e8806.
[47] KOWALCZYK A,EYICE ?,SCH?FER H,et al. Characterization of para-nitrophenol-degrading bacterial communities in river water by using functional markers and stable isotope probing[J]. Applied and environmental microbiology,2015,81(19):6890-6900.
[48] ST?RMER R, WICHELS A, GERDTS G. Geo-Chip analysis reveals reduced functional diversity of the bacterial community at a dumping site for dredged Elbe sediment[J]. Marine pollution bulletin, 2013, 77(1-2): 113-122.
[49] THOMAS J C T, OLADEINDE A, KIERAN T J, et al. Co-occurrence of antibiotic, biocide, and heavy metal resistance genes in bacteria from metal and radionuclide contaminated soils at the Savannah River Site[J]. Microbial biotechnology, 2020, 13(4): 1179-1200.
[50] LI X F. Metagenomic screening of microbiomes identifies pathogen-enriched environments[J]. Environmental sciences europe, 2019, 31(1): 1-12.
[51] SCHNEIDER D, REIMER A, HAHLBROCK A, et al. Metagenomic and metatranscriptomic analyses of bacterial communities derived from a calcifying karst water creek biofilm and tufa[J]. Geomicrobiology journal, 2015, 32(3-4): 316-331.
[52] FABIAN I,EHSAN V,CHRISTINA H, et al. Single-cell RNA-sequencing reports growth-condition-specific global transcriptomes of individual bacteria[J]. Nature microbiology,2020,5(10):1202-1206.
收稿日期:2024-06-24
基金项目:国家自然科学基金项目(21611130030)
作者简介:张利平(1967-),男,湖北谷城人,工程师,主要从事环境监测评价工作,(电话)027-83692701(电子信箱)tj13807153689@163.com;通信作者,王贵春(1968-),湖北谷城人,编审,博士,主要从事农业科技传播与编辑出版工作,(电话)027-87389634(电子信箱)494641542@qq.com;吕 斌(1967-),广西桂林人,教授,主要从事环境卫生学研究,(电话)027-83692333(电子信箱)lubin@hust.edu.cn。
张利平,吕 慧,唐佳玲,等. 淡水生态系统细菌群落多样性和结构研究进展[J]. 湖北农业科学,2024,63(9):73-77.