味觉受体T1R1和T1R3在从江香猪附睾不同区段的差异表达

2024-08-22 00:00:00蒙利洁黄梦婷徐永健冯贤辀刘文娇龚婷
南方农业学报 2024年4期
关键词:附睾

摘要:【目的】明确从江香猪附睾中不同区段味觉受体T1R1和T1R3的定位及表达情况,为揭示猪附睾不同区段 形成特殊微环境保障精子成熟的作用机制提供参考依据。【方法】采集初情期(30d)和性成熟期(180d)从江香猪附 睾组织样品,分别采用实时荧光定量PCR、免疫组织化学、蛋白免疫印迹(Western blotting)等检测从江香猪附睾不同 区段味觉受体T1R1和T1R3的定位及表达情况。【结果】味觉受体T1R1/T1R3的编码基因TASIRI/TASIR3均表现为附睾IV区的相对表达量显著高于其他区段(Plt;0.05,下同),而I区的相对表达量显著低于其他区段,具体排序为IV区gt;V区gt;II区gt;IⅢ区gt;I区。免疫组织化学定位分析结果显示,在从江香猪附睾不同区段均检测到T1R1/T1R3不同程度的免疫阳性信号。其中,T1R1在附睾I区主要定位于肌样细胞层与基细胞核;在附睾I区主要定位于附睾上皮细胞、肌样细胞和精子细胞;在附睾IⅢ区强烈定位于附睾管腔和微绒毛根部;附睾IV区为5个区段中表达最强烈的部位,定位于附睾管腔精子、管腔内缘和狭窄细胞膜上;在附睾V区主要定位于附睾间质组织和狭窄细胞膜上。T1R3定位于附睾I区血管内皮细胞、脱落生精细胞和附睾上皮细胞(尤其是基细胞);在附睾II区的精子、晕细胞和狭窄细胞上有较 强表达;在附睾Ⅲ区和IV区主要定位于空泡化的附睾上皮细胞;在附睾V区定位于附睾管不规则处和空泡化附睾上 皮细胞,其表达强度仅次于II区。Western blotting检测结果显示,从江香猪附睾IV区的T1R1/T1R3表达水平最高,其 次是II区,二者显著高于其他区段。【结论】初情期从江香猪附睾T1R1和T1R3的表达具有区段特异性和细胞特异性,以IV区的表达水平最高,且主要定位于附睾上皮细胞顶端、狭窄细胞和微绒毛根部,提示T1R1/T1R3在建立促进猪附 睾精子成熟和储存的特殊腔内微环境中发挥重要作用。

关键词:从江香猪;附睾;味觉受体;T1R1/T1R3;区段特异性;细胞特异性

文章编号:2095-1191(2024)04-1160-10

中图分类号:S828.89

文献标志码:A

Differential expression of taste receptors T1R1 and T1R3 in different regions of epididymis in Congjiang Xiang pigs

MENG Li-jie12, HUANG Meng-ting1, XU Yong-jian1.3, FENG Xian-zhou1,LIU Wen-jiao1, GONG Ting1*

(1College of Animal Science, Guizhou University/Key Laboratory of Plateau Mountain Animal Genetics, Breeding and Reproduction, Ministry of Education/Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, Guizhou 550025, China; 2Agriculture and Rural Bureau of Libo County, Qiannan Prefecture,Guizhou Province, Qiannan, Guizhou 558400, China; 3Agriculture and Rural Affairs Bureau of QiannanPrefecture, Guizhou Province, Qiannan, Guizhou 558000, China)

Abstract:【ObjectiveTo clarify the location and expression of taste receptors T1Rl and T1R3 in different regions of the epididymis of Congjiang Xiang pigs, and to provide reference for revealing the mechanism of the formation of unique microenvironment in different segment of the epididymis to ensure sperm maturation. 【Method】 The epididymis tissuesamples at the puberty (30 d) and sexual maturity (180 d) were collected, and real-time fluorescence quantitative PCR, immunohistochemistry, and Western blotting were used to detect the location and expression of taste receptors T1R1 and T1R3 in different regions of epididymis of Congjiang Xiang pigs. 【Result】The expression level of TASIRI/TAS1R3 co- ding gene of taste receptor T1R1/T1R3 was significantly higher in epididymis IV region than in other regions (Plt;0.05, the same below), while the relative expression level of epididymis I region was significantly lower than that of other regions, and the rank was IVgt;Vgt;IIgt;IIIgt;I region. Immunohistochemical localization analysis showed that T1R1/T1R3 immunoposi- tive signals at different extents were detected in different parts of the epididymis of Congjiang Xiang pigs. Among them, T1R1 was mainly located in myoid cell layer and basal nucleus in epididymis region I. In epididymis II region, it mainly located in epididymal epithelial cells, myoid cells and sperm cells. In epididymis III region, it was strongly localized in epididymis lumen and microvilli root. Epididymis IV region was the most strongly expressed part among the five regions, which was located in the epididymis lumen sperm, lumen inner margin and narrow cell membrane. The V region of the epididymis was mainly located on the epididymis interstitial tissue and narrow cell membrane of the epididymis. TIR3 was localized in vascular endothelial cells, exfoliated spermatogenic cells and epididymal epithelial cells (especially basal cells) in epididymal region I. It was strongly expressed on sperm, halo cells and narrow cells in epididymis II region. In areas III and IV of the epididymis, it was mainly located in the vacuolated epididymal epithelial cells. The expression in- tensity of epididymal epithelial cells located in irregularity and vacuolated epididymal duct in epididymal region V was second only to that in region IIⅢ. Western blotting test results showed that the expression level of T1R1/T1R3 in epididy- mis region IV of Congjiang Xiang pigs was the highest, followed by that in epididymis region II, which was significantly higher than that other regions. 【Conclusion】The expression of TIR1 and T1R3 from the epididymis of Congjiang Xiang pigs during at puberty is region-specific and cell-specific, with the highest expression level in region IV, which is mainly located in the apex of epididymal epithelial cells, narrow cells and microvilli roots, suggesting that T1R1/T1R3 plays an important role in establishing a unique intracellular microenvironment that promotes maturation and storage of porine epi- didymal sperm.

Key words: Congjiang Xiang pigs; epididymis; taste receptor; T1R1/T1R3; region specificity; cell specificity

Foundation items: National Natural Science Foundation of China (32260836)

0 引言

【研究意义】味觉受体T1R1(Taste receptor type 1 subunit 1,T1R1)和T1R3(Taste receptor type 1 subu-nit 3,T1R3)由TASIRI和TASIR3基因编码,T1R1/T1R3在舌头味蕾中充当鲜味感受器(王涵等,2023)。 已有研究在小鼠、马、绵羊、牛、人类的结肠及小鼠的 胃中证实,T1R3沿小肠纵轴表达,并参与非味觉功 能中的营养代谢(Dyer et al.,2005;Rozengurt et al., 2006;Hass et al.,2010;Daly et al.,2012;Moran et al.,2014)。味觉受体T1R1/T1R3在生殖器官中也有表达,如睾丸和附睾(Gong et al.,2016,2024)。味觉受体TIR1/T1R3与精子的发生、成熟、受精及类固醇激 素合成有关,可调控雄性动物的生殖生理过程 (Krejcirová et al.,2018)。因此,探究从江香猪附睾不同区段味觉受体T1R1/T1R3的表达情况,对揭示 附睾不同区段形成独特微环境保障精子成熟的作用 机制具有重要意义。【前人研究进展】哺乳动物精子 的发生在睾丸中进行,但此时的睾丸精子还未发育 成熟。附睾充当精子在排精前的储存器官(Légaréet al.,2017;Sekaran,2019),精子需在附睾管腔不同微环境中逐渐获得运动和受精能力(Dacheuxand Dacheux,2015;Li et al.,2017;Zhou et al.,2018)。 附 睾负责精子的成熟和储存,其功能涉及到多层次基 因表达的严格调控(Chu et al.,2015)。目前已有研究报道,骨形态发生蛋白(BMPs)、表皮生长因子(EGF)、雄激素受体(AR)及水通道蛋白9(AQP9)等 参与附睾发育调控(Dacheux et al.,2016;Schimming et al.,2017)。附睾主要分为头、体和尾3个区域,各 区域分别提供了独特的微环境,以促进精子成熟(Menad et al.,2014;Dacheux et al.,2016;罗文泽等, 2021;原佳妮等,2023)。附睾不同区段的上皮细胞 组合及其特定蛋白表达差异,对精子的最终成熟发 挥着不可或缺的作用。附睾的3个区域还可进一步 细分,如公羊和猴子可分为I~VI区,水牛可分为I~VII区,小鼠可分为I~V区,人类可分为I~VII区 (Dacheux and Dacheux,2015)。根据猪附睾的解剖学特征,Meng等(2020)将附睾细分为头(I~IⅡ区)、体(Ⅲ区)、尾(IV~V区)3个部位5个区段。味觉受体T1R1/T1R3的表达定位于生精细胞、睾丸间质细胞和附睾精子(Spinaci et al.,2017)。T1R3在从江香猪 睾丸精子和间质细胞中高表达,参与精子的发生、成 熟及受精过程(Mosinger et al.,2013)。当编码T1R3和Ga-gustducin的基因缺失时,雄性小鼠睾丸生精 异常,且附睾精子活力减弱,最终导致小鼠雄性不育(Publicover et al.,2008)。Gong等(2016)以小鼠为动物模型,发现味觉受体T1R3在睾丸、间质细胞、支持细胞和附睾精子中高表达,且睾丸TASIR3基因在 小鼠出生后的发育过程中呈时间和细胞特异性表 达。味觉受体T1R1/T1R3在从江香猪的睾丸间质细胞和晚期生精细胞中也高表达,且其表达水平在出 生后的睾丸发育过程中呈动态变化(Gong et al., 2021)。此外,蒙利洁等(2020)通过研究从江香猪附 睾发育过程中味觉受体T1R1/T1R3的表达模式,发 现二者在不同年龄的表达变化相似,即在初情期 (30d)和性成熟期(180d)的表达水平均较高。【本研 究切入点】本课题组前期在小鼠和从江香猪的睾丸 间质细胞和晚期生精细胞中发现有大量味觉受体T1R1/T1R3分布(Gong et al.,2016,2021),但针对味觉受体T1R1/T1R3在非味觉组织(睾丸和附睾)中的 表达及其功能研究鲜见报道,附睾发育过程及各区 段的特殊功能也尚未明确。【拟解决的关键问题】通 过实时荧光定量PCR、免疫组织化学、蛋白免疫印迹 (Western blotting)等检测从江香猪附睾不同区段味觉受体T1R1和T1R3的定位及表达情况,为揭示猪 附睾不同区段形成特殊微环境保障精子成熟的作用 机制提供参考依据。

1材料与方法

1.1试验动物及样品采集

选取3头初情期(30d)和1头性成熟期(180d, 作为免疫组化阳性对照)的健康雄性从江香猪。从 江香猪圈舍温度为20~24℃,严格按照中国农场动 物福利行业标准进行喂食,并给予少量水。以硫酸 阿托品盐(A0257,美国Sigma-Aldrich公司)麻醉从 江香猪后,手术摘除睾丸,收集附睾样品。根据本课 题组前期研究结果(Menad et al.,2014;Meng et al.,2020),将附睾(近端至远端)划分为I~V区。左侧附睾-80°℃保存,用于实时荧光定量PCR和Western blotting检测;右侧附睾固定于4%多聚甲醛固定液 中,用于免疫组织化学试验。动物试验经贵州大学 实验动物伦理委员会批准,批准号EAE-GZU-2020-P001。

1.2附睾样品制备

从江香猪附睾组织在4%多聚甲醛固定液中固 定24h后,将样品转移至70%酒精中处理12~15h, 取出进行组织修块→脱水(不同浓度梯度酒精)→透明(不同浓度梯度二甲苯)→透蜡→包埋。

1.3总RNA和蛋白提取

采用TRIzol试剂(15596018,赛默飞世尔科技有限公司)和RIPA裂解缓冲液(PO013,上海碧云天生 物技术股份有限公司),按照使用说明分别提取附睾 组织总RNA及其蛋白;并以Revert Aid First Strand cDNA合成试剂盒(K1622,赛默飞世尔科技有限公司)将RNA反转录合成cDNA,-20°C保存备用。

1.4TASIRI/TASIR3基因表达定量分析

采用实时荧光定量PCR检测从江香猪附睾中的TASIRI/TASIR3基因表达情况。根据TASIRI(XM021095259.1)和TASIR3(NM 001113288.1)基因序列设计引物(表1),以β-Actin(XM_021091599.1)为内 参基因,在Bio-Rad 129CFXConnectTM实时定量PCR 检测系统进行操作,按照PowerUpTM SYBR®GreenMaster Mix试剂盒(A25742,赛默飞世尔科技有限 公司)说明设反应体系:2×SYBR®Premix Ex Tag IⅡ 5.0μL,上、下游引物各0.4pμL,cDNA模板1.0μL,dH203.2 μL。扩增程序:95℃预变性5min;95℃ 15s,60℃15s,72℃1min,进行40个循环。通过 2-AAC法计算TASIRI和TASIR3基因相对表达量。

1.5免疫组织化学试验

参照Gong等(2016)使用的免疫组化染色方案,进行附睾味觉受体T1R1/T1R3的定位与表达分析。 将石蜡包埋的附睾组织切成5um厚的切片,经二甲 苯脱蜡及梯度酒精水化后,以自来水冲洗,将切片 浸入柠檬酸溶液进行热修复(微波炉加热6min), 冷却至室温,用1×PBS洗涤3次,每次5min。为避免内源性过氧化物酶活性和抗体非特异性染色, 分别用3%H2O2和5%牛血清白蛋白(A4737,美国 Sigma-Aldrich公司)在37℃下各孵育45 min。T1R1(ab230788,1:100稀释)和T1R3(ab150525A,1:100稀释)蛋白抗体在含1%BSA的PBS中稀释,阴性对照以1×PBS代替一抗。切片与一抗在4℃下孵育过夜,1×PBS洗涤3次,每次5min。以辣根过氧化物酶标记的山羊抗兔IgG抗体(A0208,上海碧云天生物 技术股份有限公司,1:100稀释)为二抗,37℃下孵育45min。使用3,3'-二氨基联苯胺试剂盒(D6190,美国Sigma-Aldrich公司)观察结果,且所有切片用 苏木精复染10s后以中性树脂封片。所有图像由尼康ECLIPSE-Ni+DS-Ri2采集,并通过NIS-Elements BR软件进行定性分析。

1.6 Western blotting检测分析

通过BCA法测定蛋白浓度。蛋白在5×上样缓冲液中变性后,采用10%SDS-PAGE进行电泳分离,并转移至0.45mm聚偏二氟乙烯(PVDF)膜上。转膜2h后,用5%脱脂牛奶和含0.1%Tween-20(北京索莱宝科技有限公司)的Tris缓冲盐水(1×TBS)在37°℃下封膜2h;然后与T1R1、T1R3和β-Actin(1:2000 稀释)的一抗4℃下孵育过夜,洗涤后,与辣根过氧 化物酶标记的山羊抗兔IgG抗体(二抗)在37℃下孵育2 h。按BeyoECL Plus显色液(P0018S,上海碧 云天生物技术股份有限公司)说明进行显色,在 Chemi DocXRS系统下成像并拍照,最后利用ImageJ(v1.48)对蛋白灰度值进行处理。

1.7统计分析

使用GraphPad Prism 6.0对试验数据进行统计,组间比较采用单因素方差分析(One-way ANOVA),并通过Tukey's HSD检验调整P值。

2结果与分析

2.1从江香猪附睾分区结果

根据Meng等(2020)的研究方法,将从江香猪附睾细分为5个区段(图1)。其中,I区为附睾的起始 部分,与Ⅱ区构成附睾头,主要发挥吸收和分泌功 能;IⅢ区属于附睾体,是所有分区中最长、最窄的部分;附睾尾存储有大量精子,包含IⅣ区和V区,前者 为附睾尾前端,后者与输精管相连。

2.2TASIRI/TASIR3基因在从江香猪附睾组织中 的表达规律

利用实时荧光定量PCR检测TASIRI/TASIR3基 因在从江香猪附睾5个区段的表达情况,结果(图2) 显示,TASIRI基因在附睾IV区的相对表达量(9.77±0.54)显著高于其他区段(Plt;0.05,下同),而I区的相 对表达量(1.18+0.17)显著低于其他区段,具体排序 表现为IV区gt;V区gt;II区gt;II区gt;I区。与TASIRI基因的表达模式基本一致,TAS1R3基因在附睾IV区的相对表达量(7.75±0.44)也显著高于其他区段,I区的 相对表达量(1.16±0.31)最低,显著低于其他区段,具 体排序也表现为IV区gt;V区gt;IⅡ区gt;IⅢ区gt;I区。

2.3T1R1/T1R3蛋白在从江香猪附睾组织中的分布情况

免疫组织化学定位分析结果显示,除部分未成 熟狭窄细胞外,从江香猪附睾上皮细胞膜上的T1R1抗体表现出不同程度的阳性染色(图3)。在附睾I区,肌样细胞层(图3-A1,矩形)和基细胞核(图3-A2,箭头)呈阳性染色;在附睾ⅡI区,附睾上皮细胞、肌样细 胞和精子细胞呈强阳性染色,附睾脱落生精细胞(图 3-B1,矩形)和上皮细胞膜(图3-B2,箭头)均显示T1R1抗体阳性染色,且在间质区一些血细胞和血管壁T1R1抗体染色较深;在附睾IⅢ区,T1R1抗体在附睾管腔(图3-C1,矩形)和微绒毛根部(图3-C2,箭头)呈强阳性染色;在附睾IⅣ区,附睾管腔内精子(图3-D1,矩形)、管腔内缘和狭窄细胞膜(图3-D2,箭头)中存在5个区段最强烈的T1R1免疫反应;在附睾V区,TIR1主要定位于附睾间质组织(图3-E1,矩形)和狭窄细胞膜上(图3-E2,箭头)。阳性对照为性成熟从江香猪附睾尾,其附睾狭窄细胞和精子呈强烈免疫阳性反应(图3-F2,箭头);以PBS代替T1R1抗体作为阴性对照,均未见非特异性免疫反应(图3-G)。

T1R3在从江香猪附睾I~V区表现出类似于T1R1的反应模式,尤其是附睾上皮细胞膜上的T1R3阳性染色(图4)。在附睾I区,T1R3免疫定位于附睾管腔的血管内皮细胞、脱落生精细胞膜、上皮细胞膜(图4-A1,矩形)和基细胞核(图4-A2,箭头);在附睾Ⅱ区,精子、晕细胞膜(图4-B1,矩形)和狭窄细胞(图4-B2,箭头)均有较强的T1R3免疫染色;在附睾IⅢ区,附睾上皮细胞(主要是主细胞和基细胞)(图4-C1,矩形)呈中度免疫染色,空泡化的附睾上皮细胞也呈阳性染色(图4-C2,箭头);在附睾IV区,强阳性染色主要出现在精子、附睾上皮细胞膜(图4-D1,矩形)和狭窄细胞(图4-D2,箭头),尤其以狭窄细胞表现更明显;在附睾V区,附睾管不规则处(图4-E1,矩形)和空泡化附睾上皮细胞(图4-E2,箭头)的T1R3阳性反应程度仅次于III区。阳性对照为性成熟香猪附睾尾,其附睾狭窄细胞和精子呈强烈免疫阳性(图4-F2,箭头);以PBS代替T1R3 抗体作为阴性对照,均未见非特异性免疫反应(图4-G)。

2.4 "T1R1/T1R3在从江香猪附睾组织中的表达水平

通过 Western blotting检测从江香猪附睾组织中的T1R1/T1R3表达水平,结果(图5)显示,T1R1/T1R3蛋白在93 kD处出现单一的目的条带(图5-A),内参蛋白β-Actin 则在 43 kD处出现特异条带(图5-C)。在从江香猪附睾5个区段中,T1R1和T1R3 蛋白的表达水平基本一致,均以IV区的表达水平最高,其次是II区,二者显著高于其他区段。

3讨论

成年公猪的附睾可划分为头(I~II区)、体(IⅢ区)和尾(IV~V区)3个部位5个区段,各区段均具有其特异性(Meng et al.,2020)。附睾管黏膜上皮为假 复层柱状上皮,包括主细胞、基细胞、亮细胞、顶(狭 窄)细胞和晕细胞等。相应的基因表达模式也呈区 段特异性和细胞特异性,而影响附睾液的组成及精 子在附睾管运输过程中的成熟(Meng et al.,2020)。附睾腔的微环境对于精子的生存和功能至关重要。 精子在睾丸中完成形态成熟过程,随后在附睾管中 经历其功能成熟;精子残余体的去除也主要在附睾 中进行,最终由附睾管中的主细胞完成处理,若残余 体去除不全,精子获能后很难穿透卵子而完成受精 (Miyaso et al.,2022)。精子获得运动力和受精能力 均依赖于附睾黏膜上皮细胞建立的特殊管腔微环境 (Zhou et al.,2018),即在该环境中精子会经历一系列严格控制的连续成熟过程(Voisin et al.,2019;Pleuger et al.,2020,2022),而获得在雌性生殖道运动的能力,并具备受精能力(Aitken,2016;Stival etal.,2016),包括精子获能、超活化和顶体反应等(Ait-ken and Nixon, 2013; Gervasi and Visconti, 2016) 。 附睾微环境是附睾蛋白分泌和附睾基因特异表达所致(Gervasi and Visconti,2017)。Belleannée等(2011) 研究指出,已鉴定的附睾蛋白中至少有66%可分泌 到附睾液中,而参与附睾不同区段特殊微环境的形成,以影响精子活力,但目前对于附睾蛋白形成及功 能的研究相对缺乏。

目前,有关哺乳动物味觉受体T1R1/T1R3的研究主要集中在T1R1/T1R3发挥的味觉功能上,对其 在非味觉细胞中发挥的特殊功能报道相对较少。在 生殖研究领域,味觉受体T1R1/T1R3最先在睾丸和 精液中被检测发现,随后一系列研究证实其参与精 子发生、成熟及受精调控(Luddi et al.,2019),但具体 作用机制尚未明确。本课题组的前期研究也提示, 味觉受体T1R1/T1R3参与香猪睾酮合成,并通过T1R1/T1R3调节睾丸间质细胞mTOR信号通路,而影 响细胞自噬过程(徐永健,2021)。在香猪睾丸间质 细胞中,T1R3的激活或抑制可引起类固醇激素合成 相关因子的表达及睾丸雄激素(睾酮)水平的上调或 下调,说明T1R3参与了睾丸类固醇激素的合成调控(Liu et al.,2023)。Wang等(2023)研究表明,使用糖精钠、三氯蔗糖等人工甜味剂刺激甜味受体T1R3, 可增强香猪睾丸间质细胞类固醇激素表达及环磷酸 腺苷(cAMP)积累,从而促进睾酮合成,与RNA干扰 T1R1/T1R3的效果(Gong et al.,2024)一致。Ca2t+信 号通路在精子形成和受精过程中发挥重要作用 (Spinaci et al., 2017; Krejcírová et al., 2018; Shum et al.,2022),而T1Rs可通过触发Ca2*信号通路、影响味觉细胞中的cAMP水平及其耦合下游信号效应器,调控受精过程(Meyer et al.,2012)。TASIRI、TASIR2和 TASIR3基因上存在的5个甜味相关SNPs位点与精子活力、畸形率及存活率密切相关(Gentiluomo etal.,2017)。编码T1R3的TASIR3基因可通过AMPK/NR4A1信号通路调节饮食诱导的男性生殖功能障碍,即T1R3可能成为治疗男性不育的新靶点(Seong et al.,2024)。此外,TASIRs基因多态性还与人类的食物摄入量、超重和胃癌有关(Farinnella etal.,2021)。以上研究表明,T1R1/T1R3是调节雄性动物机体生殖功能的靶点。本研究也发现,从江香猪附睾5个区段(I~V区)不同程度地分布着味觉受体T1R1/T1R3,尤其以IV区最多,且主要定位于附睾上皮的狭窄细胞膜和细胞质中。与相邻的主细胞相比,狭窄细胞可形成一层薄薄的细胞质到达附睾管管腔,发挥调控管腔微环境酸化有关质子的功能(Arrighi et al.,2016;Gentiluomo et al.,2017)。 Hermo等(2015)研究证实,附睾管上皮细胞形成的顶端不规则小泡参与内吞作用,小泡通过顶端质膜循环进入管腔,并分泌H*。T1R1/T1R3特异表达于狭窄细胞中,是否作为调节蛋白参与附睾蛋白运输、增强内吞作用及形成酸化微环境均有待进一步探究。然而,T1R3在附睾IⅢ区的空泡化附睾上皮细胞中表达,也为附睾T1R3特殊非味觉功能研究提供了线索。这些空泡化的附睾上皮细胞酸化和低碳酸氢盐浓度有助于维持成熟精子在附睾内处于休眠状态,而更利于其储存(Mandon and Cyr,2015),在牛、仓鼠、针鼹和人类等物种附睾的相同区段也存在类似的空泡化附睾上皮细胞(Hermo et al.,2015;Wei etal.,2018)。

附睾精子的成熟主要受附睾上皮细胞分泌多种蛋白的连续互作影响(Dacheux et al.,2016)。本课题组前期研究在小鼠和香猪睾丸间质细胞和晚期生精细胞中发现有大量T1R1和T1R3分布,从初情期前到初情期,TASIRI/TASIR3基因表达显著增加,但进入老年期后显著下降(Gong et al.,2016),提示T1R3对精子发生和睾丸老化均有影响。本研究在从江香猪附睾不同区段均检测到T1R1和T1R3,且在附睾间质中呈强阳性染色。Meyer等(2012)在敲除TASIRI、TASIRI/TASIR3/GA-GUST和TASIRI/GA-GUST基因后,将人源TASIR3基因植入小鼠模型,结果发现味觉受体T1R1/T1R3在睾丸和附睾组织均有表达,参与小鼠精子的发生、获能及受精过程。此外,本研究发现从江香猪附睾IV区的T1R1/T1R3表达水平最高,其次是Ⅱ区,二者显著高于其他区段。T1R1/T1R3的区段特异性表达有助于附睾特殊微环境的形成,促进精子成熟与储存。为了维持这一特殊微环境,附睾液中的蛋白组成在整个附睾管中呈动态变化(Shima et al.,2004;Xie et al.,2016),即各区段的蛋白组成差异对建立腔内微环境至关重要(Arrighi et al.,2016)。从江香猪附睾IⅣ区T1R1/T1R3表达水平最高,且主要定位于附睾上皮细胞顶端、狭窄细胞和微绒毛根部,提示T1R1/T1R3的功能与IⅣ区精子完成成熟并浓缩储存的过程有关。可见,T1R1/T1R3在从江香猪附睾不同区段呈差异表达,与其参与形成特定附睾微环境有关(Chu et al.,2015;Dacheux et al.,2016),因此今后应围绕T1R1/T1R3如何参与形成特殊微环境及其如何促进附睾精子成熟等问题开展深入研究。

4结论

初情期从江香猪附睾T1R1和T1R3的表达具有区段特异性和细胞特异性,以IⅣ区的表达水平最高,且主要定位于附睾上皮细胞顶端、狭窄细胞和微绒毛根部,提示T1R1/T1R3在建立促进猪附睾精子成熟和储存的特殊腔内微环境中发挥重要作用。

参考文献(References):

罗文泽,郭宪,胡俊杰,葛闻博,段宏伟.2021.CYP19基因在牦牛睾丸及附睾组织中的表达定位[J].甘肃农业大学学报,56(3):9-14.[Luo WZ,Guo X,HuJJ,Ge WB,DuanH W. 2021. Expression and localization of CYP19 gene intestis and epididymides tissues of Bos grunniens[J]. Jour-nal of Gansu Agricultural University, 56 (3) : 9-14.] doi:10.13432/j.cnki.jgsau.2021.03.002.

蒙利洁,王维勇,杨艺,徐永健,冯贤辀,黄泳,高艺,龚婷.2020.T1R1和T1R3在从江香猪附睾发育中的表达模式[J].畜牧兽医学报,51(11):2720-2730.[Meng LJ,WangW Y,Yang Y,Xu Y J,Feng X Z,Huang Y,Gao Y,GongT. 2020. Expression patterns of T1R1 and T1R3 in theCongjiang Xiang pig during epididymal development[J].Acta Veterinaria et Zootechnica Sinica,51 (11):2720-2730.]doi:10.11843/j.issn.0366-6964.2020.11.011.

王涵,徐永健,蒙利洁,龚婷.2023.谷氨酸通过T1R1/T1R3-ERK1/2通路调节香猪睾丸间质细胞自噬相关基因表达[J].南方农业学报,54(6):1829-1836.[Wang H,XuYJ,Meng L J, Gong T. 2023. Glutamate regulating autophagy-related gene expression in Leydig cells of Xiang pig throughT1R1/T1R3-ERK1/2 pathway[J]. Journal of Southern Agri-culture, 54(6): 1829-1836.] doi: 10.3969/j.issn.2095-1191.2023.06.024.

徐永健.2021.鲜味受体T1R1/T1R3调控香猪睾丸间质细胞睾酮合成、自噬的研究[D].贵阳:贵州大学.[Xu YJ.2021. An umami taste receptor T1R1/T1R3 regulated testosterone synthesis and autophagy in testicular Leydig cells of Xiang pigs[D]. Guiyang:Guizhou University.]

原佳妮,赵延辉,侍玉梅,倪和民,郭勇,盛熙晖,齐晓龙,王相 国,邢凯.2023.利用WGCNA挖掘种公鸡睾丸和附睾中影响精子活力的核心基因[J].江苏农业学报,39(3):

762-769.[Yuan J N,Zhao Y H,Shi Y M,Ni H M,Guo Y, Sheng X H, Qi X L, Wang X G,Xing K. 2023. Mining of hub genes affecting sperm motility in testes and epididymides of breeder cocks by WGCNA method[J]. Jiangsu Journal of Agricultural Sciences,39(3):762-769. ] doi:10.3969/ j.issn.1000-4440.2023.03.017.

Aitken R J, Nixon B. 2013. Sperm capacitation: A distant landscape glimpsed but unexplored [J]. Molecular Human Reproduction, 19(12):785-793. doi: 10.1093/molehr/gat067.

Aitken R J. 2016. Oxidative stress and the etiology of male infertility [J]. Journal of Assisted Reproduction and Gene-tics,33:1691-1692. doi:10.1007/s10815-016-0791-4.

Arrighi S, Bosi G, Accogli G, Desantis S. 2016. Seasonal and ageing-depending changes of aquaporins 1 and 9 expression in the genital tract of buffalo bulls (Bubalus bubalis)[J]. Reproduction in Domestic Animals, 51 (4) : 515-523.doi: 10.1111/rda.12713.

Belleannée C, Labas V, Teixeira-Gomes A P, Gatti J L, Dacheux J L, Dachex F. 2011. Identification of luminal and secreted proteins in bull epididymis[J]. Journal of Pro- teomics,74(1):59-78. doi:10.1016/j.jprot.2010.07.013.

Chu C,Zheng G Y,Hu S G,Zhang J S,Xie S S,Ma W B,Ni M J, Tang C H, Zhou L, Zhou Y C, Liu M F, Li Y X, Zhang Y L. 2015. Epididymal region-specific miRNA expression and DNA methylation and their roles in controlling gene expression in rats[J]. PLoS One,10(4):e0124450.doi: 10.1371/journal.pone.0124450.

Dacheux J L, Dacheux F, Druart X. 2016. Epididymal protein markers and fertility[J]. Animal Reproduction Science,169: 76-87. doi: 10.1016/j.anireprosci.2016.02.034.

Dacheux J L, Dacheux F. 2015. New insights into epididymal function in relation to sperm maturation[J]. Reproduction,147(2):R27-R42. doi:10.1530/REP-13-0420.

Daly K, Al-Rammahi M,Arora D K, Moran A W,Proudman C J, Ninomiya Y, Shirazi-Beechey S P. 2012. Expression of sweet receptor components in equine small intestine: Relevance to intestinal glucose transport[J]. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology,303(2): R199-R208. doi: 10.1152/ajpregu.00031.2012.

Dyer J, Salmon K S H, Zibrik L, Shirazi-Beechey S P. 2005. Expression of sweet taste receptors of the T1R family in the intestinal tract and enteroendocrine cells[J]. Biochemical Society Transactions, 33(1):302-305. doi: 10.1042/bst

0330302. Farinella R, Erbi I, Bedini A, Donato S, Gentiluomo M, Angelucci C, Lupetti A, Cuttano A, Moscuzza F, Tuoni C,Rizzato C, Ciantelli M, Campa D. 2021. Polymorphic variants in sweet and umami taste receptor genes and birthweight [J]. Scientific Reports, 11 (1): 4971. doi: 10.1038/s41598-021-84491-4.

Gentiluomo M, Crifasi L, Luddi A, Locci D, Barale R, Piombon P, Campa R. 2017. Taste receptor polymorphisms and male infertility [J]. Human Reproduction, 32 (11) : 23242331. doi: 10.1093/humrep/dex305.

Gervasi M G, Visconti P E. 2016. Chang's meaning of capacita-tion: A molecular perspective[J]. Molecular Reproduction and Development, 83 ( 10) : 860-874. doi : 10.1002/mrd.22663.

Gervasi M G, Visconti P E. 2017. Molecular changes and signaling events occurring in spermatozoa during epididymal maturation[J ]. Andrology , 5 (2) : 204-218. doi : 10.1111/ andr.12320.

Gong T,Mu Q,Xu Y J, Wang W Y,Meng L J, Feng X Z, Liu W J,Ao Z,Zhang Y Y,Chen X,Xu H Q. 2024. Expression of the umami taste receptor T1R1/T1R3 in porcine testis of: Function in regulating testosterone synthesis and autophagy in Leydig cells [J]. The Journal of Steroid Biochemistry and Molecular Biology, 236: 106429. doi: 10.1016/j.jsbmb.2023.106429.

Gong T,Wang W Y,Xu H Q,Yang Y,Chen X,Meng L J,Xu Y J, Li Z Q, Wang S F, Mu Q. 2021. Longitudinal expression of testicular TAS1R3 from prepubertal to sex maturity in Congjiang Xiang pigs[J]. Animals, 11 (2) :437. doi: 10.3390/anil1020437.

Gong T, Wei Q W, Mao D G, Shi F X. 2016. Expression patterns of taste receptor type 1 subunit 3 and alpha-gustducin in the mouse testis during development [J]. Acta Histochemica, 118(1):20-30. doi: 10.1016/j.acthis.2015.11.001.

Hass N, Schwarzenbacher K, Breer H. 2010. T1R3 is expressed in brush cells and ghrelin-producing cells of murine stomach[J]. Cell and Tissue Research,339(3):493-504. doi:10.1007/s00441-009-0907-6.

Hermo L, Lustig M, Lefrancois S,Argraves W S, Morales C R.

2015. Expression and regulation of LRP-2/megalin in epithelial cells lining the efferent ducts and epididymis during postnatal development [J]. Molecular Reproduction and Development, 53 (3) : 282-293. doi: 10.1002/(SICI) 1098-2795(199907)53:3lt;282::AID-MRD4gt;3.0.CO;2-A.

Krejcírová R, Mañasová M, Sommerová V, Langhamerová E,Rajmon R, Mañásková -Postlerová P. 2018. G protein- coupled estrogen receptor (GPER) in adult boar testes, epididymis and spermatozoa during epididymal maturation [J]. International Journal of Biological Macromolecules, 116:113-119. doi:10.1016/j.ijbiomac.2018.05.015.

Légaré C, Akintayo A, Blondin P, Calvo E, Sullivan R. 2017. Impact of male fertility status on the transcriptome of the bovine epididymis molecular human reproduction [J]. Mo- lecular Human Reproduction,23(6):355-369. doi: 10.1093/ molehr/gax019.

Li K,Wei X D,Zhang G B,Li M,Zhang X F,Zhou C H,Hou J Q, Yuan H X. 2017. Different expression of B7-H3 in the caput,corpus, and cauda of the epididymis in mouse[J].BMC Urology,17(1):1-5. doi:10.1186/s12894-017-0215-5.

Liu W J, Gong T,Xu Y J. 2023. The co-expression of steroido-

genic enzymes with T1R3 during testicular development in the Congjiang Xiang pig[J]. Animal Reproduction Science, 251:107216. doi: 10.1016/j.anireprosci.2023.107216.

Luddi A, Governini L, Wilmskötter D, Gudermann T, Boekhoff I,Piomboni P. 2019. Taste receptors: New players in sperm biology[J]. International Journal of Molecular Sciences,20(4):967. doi:10.3390/ijms20040967.

Mandon M, Cyr D G. 2015. Tricellulin and its role in the epididymal epithelium of the rat[J]. Biology of Reproduction, 92(3): 1-11. doi:10.1095/biolreprod.114.120824.

Menad R, Smaï S, Moudilou E, Khammar F, Exbrayat J M,

Gernigon-Spychalowicz T. 2014. Immunolocalization of estrogen and androgen receptors in the caput epididymidis of the fat sand rat (Psammomys obesus) : Effects of seasonal variations, castration and efferent duct ligation [J].

Acta Histochemica, 116(4): 559-569. doi: 10.1016/j.acthis.2013.11.004.

Meng L J,Wang W Y,Xu Y J,Gong T,Yang Y. 2020. Postnatal differentiation and regional histological variations in the ductus epididymidis of the Congjiang Xiang pig[J]. Tissue and Cell,67:101411. doi: 10.1016/j.tice.2020.101411.

Meyer D, Voigt A, Widmayer P, Borth H,Huebner S, Breit A, Marschall S, de Angelis M H, Boehm U, Meyerhof W, Gudermann T, Boekhoff I. 2012. Expression of Tasl taste receptors in mammalian spermatozoa: Functional role of Taslrl in regulating basal Ca2+ and cAMP concentrations in spermatozoa[J]. PLoS One,7(2) :e32354. doi: 10.1371/ journal.pone.0032354.

Miyaso H, Ogawa Y, Itoh M. 2022. Microenvironment for spermatogenesis and sperm maturation[J]. Histochemistry and Cell Biology, 157: 273-285. doi: 10.1007/s00418-021-02071-z.

Moran A W, Al-Rammahi M, Zhang C, Bravo D, Calsamiglia S, Shirazi-Beechey S P. 2014. Sweet taste receptor expression in ruminant intestine and its activation by artificial sweeteners to regulate glucose absorption [J]. Journal of Dairy Science, 97 (8) : 4955-4972. doi: 10.3168/jds. 2014-8004.

Mosinger B,Redding K M, Parker M R, Yevshayeva V, Yee K K, Dyomina K, Li Y, Margolskee R F. 2013. Genetic loss or pharmacological blockade of testes-expressed taste genes causes male sterility[J]. Proceedings of the National Academy of Sciences of the United States of America, 110(3):12319-12324. doi:10.1073/pnas.1302827110.

Pleuger C, Ai D D, Hoppe M L, Winter L T, Bohnert D, Karl

D, Guenther S, Epelman S, Kantores C, Fijak M, Ravens

S, Middendorff R, Mayer J U, Loveland K L, Hedger M, Bhushan S, Meinhardt A. 2022. The regional distribution of resident immune cells shapes distinct immunological environments along the murine epididymis[J]. eLife, 11: e82193. doi: 10.7554/eLife.82193.

Pleuger C, Silva E J R, Pilatz A, Bhushan S, Meinhardt A.

2020. Differential immune response to infection and acute inflammation along the epididymis [J]. Frontiers in Immunology,11:599594. doi: 10.3389/fimmu.2020.599594.

Publicover S J, Giojalas L C, Teves M E,de Oliveira G S M M, Garcia A A M, Barratt C L R, Harper C. 2008. Ca2+ signalling in the control of motility and guidance in mammalian sperm[J]. Frontiers in Bioscience-Landmark, 13(15):5623-5637. doi:10.2741/3105.

Rozengurt N, Wu S V,Chen M C, Huang C,Sternini C, Rozengurt E. 2006. Colocalization of the alpha-subunit of gustducin with PYY and GLP-1 in L cells of human colon[J].

American Journal of Physiology-Gastrointestinal and Liver Physiology,291(5):G792-G802. doi: 10.1152/ajpgi.00074.2006.

Schimming B C, Baumam C A B,Pinheiro P F F, de Matteis R, Domeniconi R F. 2017. Aquaporin 9 is expressed in the "epididymis of immature and mature pigs[J]. Reproduction in Domestic Animals, 52 (4) : 617-624. doi: 10.1111/rda.

12957. Sekaran P. 2019. Congenital abnormalities of the testis and epididymis [M]. Clinical Embryology: 443-447. doi:10.1007/978-3-319-26158-4_47.

Seong H, Song J W, Lee K H, Jang G, Shin D M, Shon W J.

2024. Taste receptor type 1 member 3 regulates Western diet-induced male infertility[J]. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1869: 159433. doi: 10.1016/j.bbalip.2023.159433.

Shima J E, McLean D J, McCarrey J R, Griswold M D. 2004. The murine testicular transcriptome: Characterizing gene expression in the testis during the progression of spermatogenesis[J]. Biology of Reproduction,71 (1):319-330. doi: 10.1095/biolreprod.103.026880.

Shum W,Zhang B L,Cao A S,Zhou X,Shi S M,Zhang Z Y, Gu L Y, Shi S. 2022. Calcium homeostasis in the epididymal microenvironment: Is extracellular calcium a cofactor for matrix gla protein-dependent scavenging regulated by vitamins[J]. Frontiers in Cell and Developmental Biology,10:827940. doi:10.3389/fcell.2022.827940.

Spinaci M, Bucci D, Gadani B, Porcu E, Tamanini C, Galeati

G. 2017. Pig sperm preincubation and gamete coincubation with glutamate enhance sperm-oocyte binding and in vitro fertilization[J]. Theriogenology, 95: 149-153. doi: 10.

1016/j.theriogenology.2017.03.017.

Stival C,Puga Molina L D C,Paudel B,Buffone M G, Visconti P E, Krapf D. 2016. Sperm capacitation and acrosome reaction in mammalian sperm [J]. Advances in Anatomy, Embryology and Cell Biology,220:93-106. doi: 10.1007/978-3-319-30567-7 5. Voisin A, Saez F, Drevet J R, Guiton R. 2019. The epididymal

immune balance: A key to preserving male fertility[J].Asian Journal of Andrology,21(6):531-539. doi: 10.4103/ aja.aja_11_19.

Wang W Y,Mu Q,Feng X Z,Liu W J,Xu H Q,Chen X,Shi F

X, Gong T. 2023. Sweet taste receptor T1R3 expressed in Leydig cells is closely related to homeostasis of the steroid hormone metabolism profile[J]. Journal of Agricultural and Food Chemistry,71(20):7791-7802. doi:10.1021/acs.jafc.3c01110.

Wei Z, De I, De Iuliis G N, Dun M D, Nixon B. 2018. Characteristics of the epididymal luminal environment responsible for sperm maturation and storage[J]. Frontiers in Endocrinology,9(1): 59-72. doi: 10.3389/fendo.2018.00059.

Xie S W,Li G T,Qu L J,Cao Y,Wang Q,Zhou J Y,Zhong R H, Guo X J, Zhu Y. 2016. Identification of new epididymal luminal fluid proteins involved in sperm maturation in infertile rats treated by dutasteride using iTRAQ[J]. Molecules,21 (5):602. doi: 10.3390/molecules21050602.

Zhou W, de luliis G N, Dun M D, Nixon B. 2018. Characteristics of the epididymal luminal environment responsible for sperm maturation and storage[J]. Frontiers in Endocrinology,9:59. doi: 10.3389/fendo.2018.00059.

猜你喜欢
附睾
附睾中非编码小RNA(sncRNA)的研究进展
GPx5在牦牛隐睾附睾组织的分布特征及定位分析*
绵羊附睾液和附睾精子中抗氧化酶活性的研究
单纯附睾扭转1例报告
高频超声在附睾梗阻性无精症诊断中的应用
输精管结扎术后中远期对附睾、睾丸影响的超声观察
人附睾蛋白4在非小细胞肺癌组织及血清中的表达及临床意义
癌症进展(2016年11期)2016-03-20 13:16:03
高频超声探查用于诊断附睾病变男性不育的价值探讨
西南军医(2016年6期)2016-01-23 02:21:14
血清人附睾蛋白4联合CA125检测在卵巢癌诊断中的应用
人附睾蛋白4(HE4)在乳腺癌诊断中的价值