朱津宏 熊若男 杨思琪 高南 吴永红 张振超 吴国平 申卫收
摘要:复垦土地是重要的后备土地资源,但通常土壤结构差、有机质和养分含量低;增施有机肥是快速提升地力的关键途径,但会造成温室气体如氧化亚氮(N2O)的大量排放.接种具有N2O还原功能的植物根际促生菌(PGPR)不仅能够减少温室气体排放,还能促进作物生长.本研究以一株具有N2O还原功能的PGPR反硝化无色杆菌(Achromobacterdenitrificans)YSQ030为供试菌株,明确接种YSQ030对施用有机肥的复垦土壤N2O排放和氮循环关键功能基因的影响.通过设置施用有机无机复混肥和羊粪有机肥的土壤微宇宙试验,利用气相色谱仪分析接种YSQ030后土壤N2O排放通量,进一步计算累积排放量;在试验结束后分析土壤pH、EC(电导率)、硝态氮和铵态氮含量,并利用实时荧光定量PRC分析土壤硝化功能基因(AOAamoA和AOBamoA)和反硝化功能基因(nirS、nirK、nosZⅠ和nosZⅡ)的丰度.结果显示,施用有机无机复混肥和羊粪有机肥的土壤中接种YSQ030明显减少复垦土壤N2O排放,N2O排放量最大减少分别达90.4%和30.6%.施用有机无机复混肥处理的N2O排放量远高于施用羊粪有机肥处理,这可能是由于施用有机无机复混肥的土壤与施用羊粪有机肥的土壤相比,土壤中编码反硝化细菌N2O还原酶基因nosZⅠ和非典型反硝化细菌N2O还原酶基因nosZⅡ基因丰度较低.施用有机无机复混肥均显著降低土壤硝化和反硝化功能基因丰度,而施用羊粪有机肥对土壤硝化和反硝化功能基因丰度大多没有明显影响.本研究表明,接种YSQ030能够减少施用有机肥土壤的N2O排放,将为复垦土壤地力提升和N2O减排提供科学依据,也将为研发新型微生物肥料或生物有机肥提供核心菌种资源.
关键词微生物肥料;有机肥;氧化亚氮(N2O);植物根际促生菌;温室气体减排
中图分类号S144
文献标志码A
0引言
为了切实保护我国耕地资源,合理利用与开发复垦土地十分重要.复垦土地作为我国重要后备土地资源,存在土壤结构差、抗侵蚀能力弱、养分含量低等问题[1],导致农作物生长发育不良、产量低下.增施有机肥可改善复垦土壤结构,快速提升地力[2],例如施用牛粪有机肥可以增加复垦土壤有机质含量、提高作物存活率[3].此外,施用化学肥料也可提高复垦土壤养分含量、保证作物生长.有机肥无机肥配施可以提高土壤肥力,同时促进作物增产[4].然而,增施有机肥和施用化学氮肥,在提升地力的同时,也造成了大量的温室气体N2O排放.N2O是一种会破坏臭氧层且在大气存留时间长的温室气体[5].百年尺度下N2O的增温潜势约为CO2的273倍[6-7].截至2018年,全球大气中N2O质量分数以每年1.83×10-9的速度增长,目前大气中N2O质量分数约为330×10-9[8].农业排放的N2O约占全球人为排放的52%[9],其中农业土壤源N2O是重要来源,因此减少农业土壤N2O排放十分重要.
农田土壤N2O的产生包括很多复杂的微生物过程,其中硝化过程中氨氧化微生物(AOA和AOB)和反硝化过程中含有nirS/K基因的反硝化微生物是产生N2O的主要微生物类群.微生物硝化作用的过程主要是将NH3氧化为NO2-,最终生成NO3-[10-12],该过程主要是由含有amoA基因的氨氧化古菌(AOA)和氨氧化细菌(AOB)进行.含有编码氨单加氧酶的反硝化作用过程主要是将NO3-还原为NO2-、NO、N2O,最后还原成N2的过程[13-15].nirS/K基因编码的亚硝酸还原酶(NIR)将NO2-还原为NO,是反硝化过程的关键酶和限速酶[14].含有nosZ基因的反硝化微生物将N2O还原为氮气(N2),这是目前已知的生物途径中N2O唯一的汇[16-18].N2O还原细菌有两种不同的类群,分别为典型的反硝化细菌(CladeⅠ)和非典型的反硝化细菌(CladeⅡ).因此研究硝化功能基因(AOAamoA和AOBamoA)和反硝化功能基因(nirS、nirK、nosZⅠ和nosZⅡ)在农田土壤中的丰度对N2O产生和消耗过程至关重要.
植物根际促生菌(PGPR)指能够稳定存活在植物根际周围或土壤中并产生和分泌各种抑菌物质[19-20],从而直接或间接促进植物生长或防治植物病害、有效降低病原物对植物危害的一类有益微生物的总称.利用PGPR制作而成的微生物肥料不仅能够提高作物的存活率、增大作物产量和修复环境污染[21-23],还能降低温室气体N2O的排放[24-26].最新研究表明直接应用N2O还原微生物可减少农业土壤N2O的排放[15,27].Gao等[28]在温室盆栽试验条件下向种植红花苜蓿和梯牧草的土壤接种具有植物促生效应的N2O还原细菌,大部分菌株同时具有减排土壤N2O和促进植物生长的双重效应.申卫收等[25]将四株根际促生菌接种到农田土壤,发现部分菌株能有效减少农田土壤N2O的排放.因此,研究具有N2O减排效应的植物根际促生菌对N2O减排和土壤地力提升具有重要意义.
在土壤微宇宙条件下以一株具有N2O还原功能的植物根际促生菌YSQ030为供试菌株,研究接种YSQ030对施用不同用量有机无机复混肥和羊粪有机肥的复垦土壤N2O排放的影响,并采用实时荧光定量PCR分析土壤中硝化功能基因(AOAamoA和AOBamoA)和反硝化功能基因(nirS、nirK、nosZⅠ和nosZⅡ)的丰度变化,探究接种YSQ030减少土壤N2O排放的微生物生态机理,为复垦土壤地力提升和固碳减排提供科学依据.
1材料和方法
1.1供试菌株
供试用的N2O还原细菌YSQ030为反硝化无色杆菌(Achromobacterdenitrificans),前期研究表明其具有还原N2O的能力[29],从江苏省南京市江北新区某水塘芦苇根际土中分离获得.该菌株不仅对N2O具有减排功效,而且对农作物具有促生效应[25].开展土壤微宇宙试验时,将菌株接种到改良的营养肉汤培养基(牛肉浸膏30g·L-1、多聚蛋白胨5.0g·L-1、硝酸钠0.3mmol·L-1和琥珀酸钠4.4mmol·L-1,溶剂为蒸馏水,简称NBNS培养基)中,置于28℃摇床中在180r·min-1振荡培养约24h,用无菌的NBNS液体培养基在600nm紫外可见分光光度计测定下调节菌液浓度至OD600nm约为1.0备用.
1.2供试土壤
土壤微宇宙试验供试土壤取自江苏省镇江市句容市白兔镇复垦土地,土地原用于砖瓦厂的厂房地基,于2018年变更为农业试验用地,土壤为黄棕壤,土体深厚,质地黏重,核状和柱状结构发育,土壤肥力水平较低,难以发展农业生产.土壤采集后,在自然条件下风干,过2mm筛,室温条件下保存.
1.3供试有机肥
土壤微宇宙试验所用有机肥为镇江贝思特有机活性肥料有限公司所提供的有机无机复混肥(氮、磷、钾质量分数分别为9%、5%、6%,有机质质量分数大于等于20%)和江苏丘陵地区镇江农业科学研究所提供的羊粪有机肥(氮质量分数为2.7%).
1.4土壤微宇宙试验设计
土壤微宇宙试验共13个处理,每个处理4个重复,具体处理设置如表1所示.C1.6、C3.9、C7.8分别表示施用1.6、3.9和7.8g有机无机复混肥,同时按照质量体积比1∶1加入无菌的NBNS液体培养基;IC1.6、IC3.9、IC7.8分别表示施用1.6、3.9和7.8g有机无机复混肥,同时按照质量体积比1∶1接种YSQ030菌液;S3.7、S13、S26分别表示施用3.7、13和26g羊粪有机肥,同时按照质量体积比1∶1加入无菌的NBNS液体培养基;IS3.7、IS13、IS26分别表示施用3.7、13和26g羊粪有机肥,同时按照质量体积比1∶1接种YSQ030菌液;CK表示不施肥、不接种的对照.建立土壤微宇宙试验具体过程:先称取100g供试土壤放入约500mL的培养瓶中,加入有机肥、混合搅拌均匀;接着加入100g供试土壤,将培养瓶中的土壤压实后,倒入YSQ030菌液或无菌的NBNS液体培养基;最后加入蒸馏水使得培养瓶中的土壤含水量达到最大田间持水量的80%.将处理完的培养瓶放入生化培养箱内,置于26℃暗培养.
1.5气体采集与测定
采集气样时,每个培养瓶盖上密封盖,保持1h后采集气体.在接种YSQ030菌液后的第2天开始采气,采样频率为2d一次,共15次.采集后的气体采用气相色谱仪(Agilent7890A,USA)测定N2O浓度.气相色谱仪分析柱为PoropakQ填充柱,柱箱温度为60℃,载气为99.999%的高纯氮气;后检测器为微池电子捕获检测器(ECD),用于测定气体样品中N2O的浓度,工作温度为400℃,尾吹气为5%氩甲烷标准气(99.999%),流量为2mL·min-1,最低检测下限为32μg·kg-1.
1.6土壤样品采集与分析
采集培养试验结束时的土壤,每个试验样品采集2份:一份过2mm筛并储藏于4℃冰箱,用于分析pH、EC(电导率),以及铵态氮、硝态氮等土壤理化性质;另一份保存到-80℃超低温冰箱用于提取DNA.采用玻璃电极法测定土壤样品的pH,利用电导率仪测定土壤样品的EC,紫外分光光度法测定样品的硝态氮和铵态氮含量.
1.7提取土壤DNA与实时荧光定量PCR分析
利用HiPureSoilDNAMiniKit试剂盒(Magen,China)提取土壤样品中的DNA,并使用超微量紫外可见分光光度计(LifeReal,China)测定DNA浓度.提取的土壤DNA样品在实时荧光定量PCR仪(bio-rad,CFX96,China)上完成反应,每个样品3个重复.反应体系为25μL,包括12.5μL的TBGreenPremixExTaqⅡ、1μL的正反引物、5.5μL双蒸水以及5μL的DNA模板.本试验设计的氮循环功能基因种类、引物序列以及反应程序如表2所示.所有试验结果的扩增效率均处于90.5%~95.5%之间,溶解曲线呈单峰.
1.8数据统计与分析
所有数据用Origin2022和Excel2010软件进行处理和绘图,采用IBMSPSSStatistics软件对不同试验处理进行方差分析、最小显著性检验(LSD)和相关性分析;不同处理间统计差异显著性(P<0.05)用不同的小写字母表示,相关性分析中以P<0.01表示极显著相关,P<0.05表示显著相关.
2结果与分析
2.1接种YSQ030对施用两种有机肥土壤N2O排放的影响
等氮量条件下施用有机无机复混肥后土壤N2O排放通量远高于施用羊粪有机肥.N2O排放通量在第2天达到排放峰值,2周后出现第2个峰值,但相对于第1次峰值大幅降低(图1).除了IC1.6处理相对于C1.6处理N2O排放量略微上升外,其余处理在接种YSQ030后均能有效降低N2O排放量(单位时间单位质量干土所排放的N2O态氮的质量).双因素方差分析结果显示,接种YSQ030效应极显著,但施用有机无机复混肥的效应不显著,两者交互作用的效应显著.施用较大量有机无机复混肥配施YSQ030的效果更加明显,IC3.9、IC7.8与对应的未接种YSQ030菌液的处理相比N2O累积排放量分别减少了75.4%和91.5%(图2).接种YSQ030的效应不显著,但施用羊粪有机肥的效应显著,两者交互作用的效应不显著.施用羊粪有机肥后接种YSQ030,减排效果从大到小依次为IS3.7>IS26>IS13.IS3.7处理与S3.7处理相比N2O排放量降低了近30.9%.
2.2接种YSQ030对施用两种有机肥土壤理化性质的影响
施用有机无机复混肥相对于不施肥对照均显著降低土壤pH值,而施用有机无机复混肥后接种YSQ030能明显提高土壤pH.施用羊粪有机肥相对于不施肥对照显著降低土壤pH,但随着施用量增加,土壤pH值也随之上升.施用有机肥与未施肥的对照相比均能够显著提升土壤的电导率,且电导率的增加随施用量的增加而呈现上升趋势.在等氮量条件下施用有机无机复混肥相对于羊粪有机肥,土壤电导率增加更快.施用有机无机复混肥和羊粪有机肥对于土壤中的铵态氮和硝态氮提升显著,尤其是施用有机无机复混肥后,土壤中的硝态氮和铵态氮含量远远高过施羊粪有机肥.施用有机无机复混肥后接种YSQ030,除IC1.6处理外,其余处理土壤中的硝态氮和铵态氮含量均有不同程度的降低,并随着肥料用量的增加而下降.施用羊粪有机肥后接种YSQ030,土壤中的铵态氮含量则无明显变化,但硝态氮含量有所提升,并随着肥料用量的增加而增大(表3、表4).在施用有机无机复混肥的基础上接种YSQ030能够调节土壤pH、电导率,降低土壤中的硝态氮、铵态氮含量;在施用羊粪有机肥的基础上接种YSQ030也能调节土壤pH、电导率,而且还能提升土壤中的硝态氮含量,增强土壤养分含量.
2.3接种YSQ030对施用两种有机肥土壤硝化和反硝化功能基因丰度的影响
2.3.1硝化功能基因丰度
施用有机无机复混肥后接种YSQ030相对于不接种对照能够增加土壤中AOAamoA基因丰度(单位质量干土中基因的拷贝数),IC1.6处理相对于C1.6处理土壤中的AOAamoA基因丰度增长幅度最大(图3a);IC1.6和IC3.9处理能提升土壤中AOBamoA基因丰度(图3c).除IS3.7处理外,其他施用羊粪有机肥接种YSQ030的处理与对应未接种处理相比,土壤中的AOAamoA基因丰度无显著变化(图3b);除IS26处理外,其他接种YSQ030的处理与对应未接种处理相比,土壤中的AOBamoA基因丰度无显著变化(图3d).施用有机无机复混肥和羊粪有机肥均降低了土壤中AOAamoA基因丰度.施用有机无机复混肥的处理土壤AOAamoA基因丰度降低幅度从大到小依次为C1.6、C7.8、C3.9.施用羊粪有机肥的处理土壤AOAamoA基因丰度降低幅度从大到小依次为S26、S13、S3.7.施用有机无机复混肥后土壤中的AOBamoA基因丰度均显著降低,但随着施肥量的增加其丰度也显著增加.除S26处理外施用羊粪有机肥接种YSQ030能显著增加土壤中AOBamoA基因丰度(图3).
2.3.2反硝化功能基因丰度
施用有机无机复混肥后接种YSQ030相对于不接种处理能增加土壤nirS基因丰度(图4a).除IC7.8处理外,施用有机无机复混肥后接种YSQ030的处理与对应未接种处理相比,土壤中的nirK基因丰度均有增加趋势(图4c).施用羊粪有机肥后接种YSQ030处理与对应未接种菌株的处理相比,土壤中nirS和nirK基因丰度均无明显变化(图4b和4d).施用有机无机复混肥和羊粪有机肥与未施肥对照相比,均显著降低了土壤nirS基因丰度.除IC7.8和C7.8处理外,施用有机无机复混肥与未施肥对照相比,显著降低了土壤中nirK的基因丰度,但随着有机无机复混肥的施用量增加,土壤中nirK基因丰度有增加的趋势.施用羊粪有机肥的所有处理与未施肥对照相比,土壤中nirK的基因丰度均无显著变化(图4).
施用有机无机复混肥后接种YSQ030处理与对应未接种处理相比,土壤nosZⅠ和nosZⅡ基因丰度均呈增加趋势.其中:IC1.6和IC3.9处理均显著提高土壤中nosZⅠ基因丰度,分别增加了99.7%和75.4%;IC7.8处理的nosZⅡ基因丰度显著增加(图5a和5c).施用羊粪有机肥后接种YSQ030,土壤中nosZⅠ基因丰度均呈现减少趋势(图5b).除IS13处理能增加土壤5基因丰度外,IS3.7和IS26处理降低了土壤nosZⅡ基因丰度(图5d).施用有机无机复混肥的所有处理与未施肥对照相比,土壤nosZⅠ和nosZⅡ基因丰度均显著降低,而且nosZⅡ基因丰度降低程度更大.随着有机无机复混肥的用量增加,土壤nosZⅠ基因丰度逐渐增大;相对于C1.6处理,C3.9和C7.8处理土壤nosZⅠ基因丰度增量均为1倍以上(图5a和5c).施用羊粪有机肥的多数处理土壤中nosZⅡ基因丰度与未施肥对照相比均有增加趋势,其中S3.7和S26处理显著增加了土壤中nosZⅡ基因丰度(图5d).
2.4氮循环关键功能基因、土壤理化性质与N2O排放量的相关性分析
土壤氮循环关键功能基因、土壤理化性质与N2O排放量的相关性如表5所示.土壤N2O排放量与pH和AOAamoA、nosZⅡ基因丰度呈负相关关系(P<0.01),与EC、硝态氮、铵态氮呈现正相关关系(P<0.01).土壤pH与土壤中EC、硝态氮、铵态氮呈负相关关系(P<0.01),与AOAamoA、AOBamoA、nirS、nirK、nosZⅠ、nosZⅡ基因丰度呈正相关关系(P<0.01).EC与土壤中硝态氮和铵态氮呈正相关关系(P<0.01),与AOBamoA、nosZⅡ基因丰度呈负相关关系(P<0.01),与AOAamoA、nirS、nosZⅠ基因丰度呈负相关关系(P<0.05).硝态氮与铵态氮呈正相关关系(P<0.01),与土壤中AOBamoA、nosZⅡ基因丰度呈负相关关系(P<0.01),与AOAamoA基因丰度呈负相关关系(P<0.05).铵态氮与AOBamoA、nosZⅠ、nosZⅡ基因丰度呈负相关关系(P<0.01),与AOAamoA、nirS基因丰度呈负相关关系(P<0.05).AOBamoA基因丰度与AOBamoA、nirS、nirK、nosZⅠ、nosZⅡ基因丰度呈正相关关系(P<0.01).其余反硝化功能基因丰度之间呈正相关关系(P<0.01).
3讨论
复垦土壤因其地力水平低、养分含量少,往往需要施用有机肥来改善土壤结构、提升肥力水平.有研究表明:将木本泥炭制作成的有机肥施到黄河三角洲地区复垦土壤,能够增加土壤有机质含量[30];将腐殖酸施用到由黄绵土组成的复垦土壤中,使得土壤孔隙度提升,从而有利于地力快速提升和农业发展[31];将改良的有机肥施用到露天煤矿区复垦土壤中,能够提升土壤肥力[32].但是施用有机肥会增加土壤N2O的排放,而且施用有机肥对于土壤N2O的排放比施用化肥更多[33],所以在土地复垦的过程中很难兼顾地力提升和固碳减排.
PGPR作为绝大多数微生物肥料的重要菌种来源,不仅能够影响土壤中氮素养分转化和供应,减少农田土壤N2O的排放,而且还能够调节土壤理化性质,保持和提高土壤肥力.PGPR的减排能力也成为国内外许多学者的研究热点.Gao等[26]将N2O还原菌接种至添加畜禽粪便有机肥的土壤中,发现能够减排N2O;Itakura等[27]在田间原位条件和蛭石盆栽试验体系中将含nosZ基因的大豆根瘤菌接种至大豆根部能够有效减少N2O的排放;接种具有N2O还原功能的PGPR到牧草地土壤,不仅可以减少土壤N2O的排放,而且能够促进牧草生长[28].反硝化无色杆菌YSQ030在纯培养条件下表现出非常强的N2O还原能力,减排效率达66.3%;在田间原位条件下将该菌剂接种到施用尿素的设施栽培蔬菜地,显著减少了土壤N2O累积排放量,同时显著增加了作物的干重、叶面积以及叶片叶绿素含量[25].
本研究在土壤微宇宙条件下,通过接种含有nosZ基因的YSQ030到施用有机无机复混肥和羊粪有机肥的丘陵地区复垦土壤,发现在施用有机无机复混肥和羊粪有机肥的土壤中接种YSQ030具有减少N2O排放的能力,最大减排效率分别达91.5%和30.9%.本试验中接种YSQ030后表现出很明显的N2O减排效应,可能是接种的微生物本身能合成有活性的氧化亚氮还原酶(N2OR)或通过改变土著N2O还原细菌群落的组成和丰度以及代谢活性,从而实现农业土壤N2O的减排.但接种微生物在环境中存活和定殖等情况尚不明确,监测其在土壤中的存活和定殖情况至关重要.Gao等[34]基于菌株的全基因组序列设计菌株特异性引物,定量分析菌株在培养过程中的动态变化.本试验中接种YSQ030菌剂后菌株的存活和定殖情况以及其他土著微生物群落组成和丰度变化,对揭示减少N2O排放的微生物机理十分必要.后续将设计菌株特异性引物,并结合功能基因的高通量测序更加深入地探讨相应的土壤微生物机理.
土壤中N2O的排放主要是由微生物的硝化和反硝化作用主导的,N2O的减排则要通过产生N2OR的反硝化微生物将N2O还原为N2,微生物产生N2OR主要是由nosZ基因编码,因此土壤微生物种群的N2O还原能力将土壤中nosZ基因丰度作为评价指标[35-37].这与本研究得出的结果相似,施用有机无机复混肥后接种YSQ030的土壤中N2O排放量下降,这得益于土壤中nosZ基因丰度的增加.在减排效果较好的IC3.9、IC7.8处理的土壤中,功能基因nosZⅠ和nosZⅡ基因丰度都有不同程度的提升.施用有机无机复混肥后土壤中N2O排放量显著增加,这可能是因为土壤中功能基因nosZⅠ和nosZⅡ基因丰度下降.在等氮量条件下施用有机无机复混肥处理的N2O排放量远高于施用羊粪有机肥处理,这可能是由于施用有机无机复混肥的土壤中nosZⅠ和nosZⅡ基因丰度均低于施用羊粪有机肥的土壤,尤其是nosZⅡ基因丰度降低更加明显.本研究通过相关性分析发现N2O排放量与nosZⅠ和nosZⅡ基因丰度均呈负相关,尤其是与nosZⅡ基因丰度呈极显著负相关(P<0.01),表明nosZⅡ基因在减排农田土壤N2O排放中具有更加重要的作用.这也是因为非典型的反硝化细菌大多仅含有nosZ基因,不含其他反硝化基因[38-39].
N2O还原为N2的生物过程受诸多环境因子的影响,其中pH是最为关键的影响因素[40].本研究中pH与N2O排放量、其他环境因子以及硝化和反硝化功能基因均呈现极显著相关.施用有机无机复混肥对土壤硝化和反硝化功能基因丰度均有明显影响,而施用羊粪有机肥对土壤硝化和反硝化功能基因大多没有显著影响,这也意味着不同类型有机肥对氮循环关键功能基因丰度的影响各不相同.此外,施用不同类型有机肥后接种YSQ030,其减少土壤N2O排放的效应也各不相同,相应的土壤微生物机理值得进一步研究.
4结论
无论施用有机无机复混肥还是羊粪有机肥都能提高土壤矿物氮含量,但也增加了土壤N2O排放量.等氮量条件下,施用有机无机复混肥处理的N2O排放量远高于施用羊粪有机肥,这可能是由于施用有机无机复混肥的土壤中nosZⅠ和nosZⅡ基因丰度均低于施用羊粪有机肥的土壤,尤其是nosZⅡ基因丰度降低更为明显.施用含氮量较高的有机无机复混肥并接种YSQ030能够显著降低土壤N2O的排放量,最高减少91.5%,而且与未接种的对照相比土壤中nosZⅠ和nosZⅡ基因丰度均明显增加.施用含氮量较低的羊粪有机肥并接种YSQ030能有效降低土壤N2O的排放量,最高减少30.9%.研究结果将为研发具有地力提升和固碳减排协同的新型微生物肥料、生物有机肥提供核心菌种,也将为减少复垦土壤N2O排放提供科学依据.
参考文献
References
[1]
李然,徐明岗,邬磊,等.煤矿区复垦土壤中秸秆和生物炭的分解特征[J].植物营养与肥料学报,2021,27(7):1129-1140
LIRan,XUMinggang,WULei,etal.Decompositioncharacteristicsofstrawandbiocharinareclaimedsoilfromcoalminingarea[J].PlantNutritionandFertilizerScience,2021,27(7):1129-1140
[2]ZhangX,DavidsonEA,MauzerallDL,etal.Managingnitrogenforsustainabledevelopment[J].Nature,2015,528(7580):51-59
[3]郭龙,李陈,刘佩诗,等.牛粪有机肥替代化肥对茶叶产量、品质及茶园土壤肥力的影响[J].水土保持学报,2021,35(6):264-269
GUOLong,LIChen,LIUPeishi,etal.Effectofreplacingchemicalfertilizerwithcowmanureorganicfertilizeronteayield,quality,andsoilfertilityinteagarden[J].JournalofSoilandWaterConservation,2021,35(6):264-269
[4]乔莎莎,张永清,杨丽雯,等.有机肥对铅胁迫下小麦生长的影响[J].应用生态学报,2011,22(4):1094-1100
QIAOShasha,ZHANGYongqing,YANGLiwen,etal.Effectsoforganicmanureonwheatgrowthunderleadstress[J].ChineseJournalofAppliedEcology,2011,22(4):1094-1100
[5]LiuX,ChenCR,WangWJ,etal.SoilenvironmentalfactorsratherthandenitrificationgeneabundancecontrolN2Ofluxesinawetsclerophyllforestwithdifferentburningfrequency[J].SoilBiologyandBiochemistry,2013,57:292-300
[6]JonesCM,SporA,BrennanFP,etal.RecentlyidentifiedmicrobialguildmediatessoilN2Osinkcapacity[J].NatureClimateChange,2014,4(9):801-805
[7]ChenZM,DingWX,XuYH,etal.IncreasedN2Oemissionsduringsoildryingafterwaterloggingandspringthawinarecordwetyear[J].SoilBiologyandBiochemistry,2016,101:152-164
[8]LiuG,MaJ,YangYT,etal.Effectsofstrawincorporationmethodsonnitrousoxideandmethaneemissionsfromawheat-ricerotationsystem[J].Pedosphere,2019,29(2):204-215
[9]TianHQ,XuRT,CanadellJG,etal.Acomprehensivequantificationofglobalnitrousoxidesourcesandsinks[J].Nature,2020,586(7828):248-256
[10]聂江文,王幼娟,吴邦魁,等.紫云英还田对早稻直播稻田温室气体排放的影响[J].农业环境科学学报,2018,37(10):2334-2341
NIEJiangwen,WANGYoujuan,WUBangkui,etal.EffectofChinesemilkvetchincorporationongreenhousegasemissionsfromearly-ricedirect-seedingpaddyfields[J].JournalofAgro-EnvironmentScience,2018,37(10):2334-2341
[11]李虎,邱建军,王立刚,等.中国农田主要温室气体排放特征与控制技术[J].生态环境学报,2012,21(1):159-165
LIHu,QIUJianjun,WANGLigang,etal.ThecharacterizationofgreenhousegasesfluxesfromcroplandsofChinaandmitigationtechnologies[J].EcologyandEnvironmentalSciences,2012,21(1):159-165
[12]胡玉麟,汤水荣,陶凯,等.优化施肥模式对我国热带地区水稻-豇豆轮作系统N2O和CH4排放的影响[J].环境科学,2019,40(11):5182-5190
HUYulin,TANGShuirong,TAOKai,etal.EffectsofoptimizingfertilizationonN2OandCH4emissionsinapaddy-cowpearotationsysteminthetropicalregionofChina[J].EnvironmentalScience,2019,40(11):5182-5190
[13]KuypersMMM,MarchantHK,KartalB.Themicrobialnitrogen-cyclingnetwork[J].NatureReviewsMicrobiology,2018,16(5):263-276
[14]ProsserJI,HinkL,Gubry-RanginC,etal.Nitrousoxideproductionbyammoniaoxidizers:physiologicaldiversity,nichedifferentiationandpotentialmitigationstrategies[J].GlobalChangeBiology,2020,26(1):103-118
[15]申卫收,熊若男,张欢欢,等.微生物介导的农业土壤氧化亚氮减排研究进展[J].土壤学报,2023,60(2):332-344
SHENWeishou,XIONGRuonan,ZHANGHuanhuan,etal.Researchprogressonmicrobial-mediatedmitigationofnitrousoxideemissionsfromagriculturalsoils[J].JournalofSoilScience,2023,60(2):332-344
[16]SteinLY.Thelong-termrelationshipbetweenmicrobialmetabolismandgreenhousegases[J].TrendsinMicrobiology,2020,28(6):500-511
[17]PhilippotL,AndertJ,JonesCM,etal.ImportanceofdenitrifierslackingthegenesencodingthenitrousoxidereductaseforN2Oemissionsfromsoil[J].GlobalChangeBiology,2011,17(3):1497-1504
[18]张玉铭,胡春胜,张佳宝,等.农田土壤主要温室气体(CO2、CH4、N2O)的源/汇强度及其温室效应研究进展[J].中国生态农业学报,2011,19(4):966-975
ZHANGYuming,HUChunsheng,ZHANGJiabao,etal.Researchadvancesonsource/sinkintensitiesandgreenhouseeffectsofCO2,CH4andN2Oinagriculturalsoils[J].ChineseJournalofEco-Agriculture,2011,19(4):966-975
[19]ShaoJH,XuZH,ZhangN,etal.Contributionofindole-3-aceticacidintheplantgrowthpromotionbytherhizosphericstrainBacillusamyloliquefaciensSQR9[J].BiologyandFertilityofSoils,2014,51:321-330
[20]霍佳慧,毕少杰,于欣卉,等.植物根际促生菌作用机制研究进展[J].现代农业科技,2022(9):90-96
HUOJiahui,BIShaojie,YUXinhui,etal.Researchprogressonthemechanismofplantgrowthpromotingrhizobacteria[J].XiandaiNongyeKeji,2022(9):90-96
[21]张瑞福.根际微生物:农业绿色发展中大有作为的植物第二基因组[J].生物技术通报,2020,36(9):1-2
ZHANGRuifu.Rhizospheremicroorganism:thesecondgenomeofplantswithgreatpotentialinthegreendevelopmentofagriculture[J].BiotechnologyBulletin,2020,36(9):1-2
[22]张艺灿,刘凤之,王海波.根际溶磷微生物促生机制研究进展[J].中国土壤与肥料,2020(2):1-9
ZHANGYican,LIUFengzhi,WANGHaibo.Researchprogressonplant-growth-promotingmechanismsofphosphate-solubilizingrhizospheremicrobes[J].SoilsandFertilizersSciencesinChina,2020(2):1-9
[23]付严松,李宇聪,徐志辉,等.根际促生菌调控植物根系发育的信号与分子机制研究进展[J].生物技术通报,2020,36(9):42-48
FUYansong,LIYucong,XUZhihui,etal.Researchprogressinginsignalsandmolecularmechanismsofplantgrowth-promotingrhizobacteriatoregulateplantrootdevelopment[J].BiotechnologyBulletin,2020,36(9):42-48
[24]孙玉,邢瑜琪,王红,等.西藏黄花草木樨根际溶磷菌筛选及其促生特性研究[J].高原农业,2020(5):510-516
SUNYu,XINGYuqi,WANGHong,etal.IsolationandcharacterizationofPGPRfromMelilotusofficinalisinRenbucountyofXizang[J].JournalofPlateauAgriculture,2020(5):510-516
[25]申卫收,杨思琪,张欢欢,等.四株植物根际促生菌对农田土壤N2O排放的影响[J].南京信息工程大学学报(自然科学版),2022,14(1):32-39
SHENWeishou,YANGSiqi,ZHANGHuanhuan,etal.Effectsoffourplantgrowth-promotingrhizobacteriaonN2Oemissionfromfarmlandsoil[J].JournalofNanjingUniversityofInformationScience&Technology(NaturalScienceEdition),2022,14(1):32-39
[26]GaoN,ShenWS,CamargoE,etal.Nitrousoxide(N2O)-reducingdenitrifier-inoculatedorganicfertilizermitigatesN2Oemissionsfromagriculturalsoils[J].BiologyandFertilityofSoils,2017,53(8):885-898
[27]ItakuraM,UchidaY,AkiyamaH,etal.MitigationofnitrousoxideemissionsfromsoilsbyBradyrhizobiumjaponicuminoculation[J].NatureClimateChange,2013,3(3):208-212
[28]GaoN,ShenWS,KakutaH,etal.Inoculationwithnitrousoxide(N2O)-reducingdenitrifierstrainssimultaneouslymitigatesN2Oemissionfrompasturesoilandpromotesgrowthofpastureplants[J].SoilBiologyandBiochemistry,2016,97:83-91
[29]杨思琪,张欢欢,申卫收,等.氧化亚氮还原细菌YSQ030的筛选、鉴定及植物促生特性[J].中国土壤与肥料,2024(1):210-217
YANGSiqi,ZHANGHuanhuan,SHENWeishou,etal.Isolation,identificationandplantgrowth-promotingcharacteristicsofanitrousoxide-reducingbacterium[J].SoilandFertilizerSciencesinChina,2024(1):210-217
[30]于彩虹,杜闫彬,鞠正山,等.不同改良材料对黄河三角洲耕层土壤理化性质及微生物多样性的影响[J].土壤通报,2019,50(6):1335-1342
YUCaihong,DUYanbin,JUZhengshan,etal.EffectsofdifferentmodifiedmaterialsonphysicalandchemicalpropertiesandmicrobialdiversityofcoastalsalinesoilintheYellowRiverDelta[J].ChineseJournalofSoilScience,2019,50(6):1335-1342
[31]曹丽花,刘合满,赵世伟.不同改良剂对黄绵土水稳性团聚体的改良效果及其机制[J].中国水土保持科学,2011,9(5):37-41
CAOLihua,LIUHeman,ZHAOShiwei.Effectofsoilconditionersonwaterstabilityofsoilaggregatesanditsmechanismsinloessalsoil[J].ScienceofSoilandWaterConservation,2011,9(5):37-41
[32]李华,李永青,沈成斌,等.风化煤施用对黄土高原露天煤矿区复垦土壤理化性质的影响研究[J].农业环境科学学报,2008,27(5):1752-1756
LIHua,LIYongqing,SHENChengbin,etal.Effectofweatheredcoalapplicationonphysicalandchemicalpropertiesofreclaimedsoilinopen-pitcoalminingareaofLoessPlateau[J].JournalofAgro-EnvironmentScience,2008,27(5):1752-1756
[33]武星魁,姜振萃,陆志新,等.有机肥部分替代化肥氮对叶菜产量和环境效应的影响[J].中国生态农业学报,2020,28(3):349-356
WUXingkui,JIANGZhencui,LUZhixin,etal.Effectsofthepartialreplacementofchemicalfertilizerwithmanureontheyieldandnitrogenemissionsinleafyvegetableproduction[J].ChineseJournalofEco-Agriculture,2020,28(3):349-356
[34]GaoN,ZhangHH,XiongRN,etal.Differentstrategiesforcolonizationandprevalenceafterinoculationwithplantgrowth-promotingrhizobacteriarevealedbyamonitoringmethod[J].SoilScienceandPlantNutrition,2022,68(4):442-453
[35]秦红灵,陈安磊,盛荣,等.稻田生态系统氧化亚氮(N2O)排放微生物调控机制研究进展及展望[J].农业现代化研究,2018,39(6):922-929
QINHongling,CHENAnlei,SHENGRong,etal.AreviewonthemicrobialregulationmechanismofN2Oproductionandemissionofricepaddyecosystems[J].ResearchofAgriculturalModernization,2018,39(6):922-929
[36]PauletaSR,CarepoMSP,MouraI.Sourceandreductionofnitrousoxide[J].CoordinationChemistryReviews,2019,387:436-449
[37]HenryS,BruD,StresB,etal.QuantitativedetectionofthenosZgene,encodingnitrousoxidereductase,andcomparisonoftheabundancesof16SrRNA,narG,nirK,andnosZgenesinsoils[J].AppliedandEnvironmentalMicrobiology,2006,72(8):5181-5189
[38]HallinS,PhilippotL,LfflerFE,etal.GenomicsandecologyofnovelN2O-reducingmicroorganisms[J].TrendsinMicrobiology,2018,26(1):43-55
[39]JonesCM,GrafDR,BruD,etal.Theunaccountedyetabundantnitrousoxide-reducingmicrobialcommunity:apotentialnitrousoxidesink[J].TheISMEJournal,2013,7(2):417-426
[40]HuHW,ChenDL,HeJZ.Microbialregulationofterrestrialnitrousoxideformation:understandingthebiologicalpathwaysforpredictionofemissionrates[J].FEMSMicrobiologyReviews,2015,39(5):729-749
EffectsofinoculationwithN2O-reducingbacteriaYSQ030onsoilN2O
emissionandkeyfunctionalgenesinvolvedinnitrogencyclinginreclaimedsoil
ZHUJinhong1XIONGRuonan1YANGSiqi1GAONan2WUYonghong3ZHANGZhenchao4WUGuoping4SHENWeishou1
1SchoolofEnvironmentalScienceandEngineering/JiangsuKeyLaboratoryofAtmosphericEnvironment
Monitoring&PollutionControl/CollaborativeInnovationCenterofAtmosphericEnvironmentandEquipment
Technology,NanjingUniversityofInformationScience&Technology,Nanjing210044,China
2CollegeofBiotechnologyandPharmaceuticalEngineering/NationalEngineeringResearch
CenterforBiotechnology,NanjingTechUniversity,Nanjing211816,China
3StateKeyLaboratoryofSoil&SustainableAgriculture,InstituteofSoilScience,
ChineseAcademyofSciences,Nanjing210008,China
4ZhenjiangInstituteofAgriculturalSciencesinHillyAreaofJiangsuProvince,Zhenjiang212400,China
AbstractThoughthereclaimedlandisanimportantreservelandresource,itusuallyispoorinsoilstructureandlowinorganicmatterandnutrientcontent.Organicfertilizercanquicklyimprovesoilproductivity,yetitwillcauselargeemissionsofgreenhousegasessuchasNitrousOxide(N2O).IthasbeenprovedthattheinoculationofPlantGrowth-PromotingRhizobacteria(PGPR)withN2Oreductionfunctionnotonlyreducesgreenhousegasemissionsbutalsopromotescropgrowth.Inthisstudy,aPGPRdenitrificansYSQ030withN2OreductionfunctionwasusedastheteststraintoclarifytheeffectofYSQ030onN2Oemissionandnitrogencyclingkeyfunctionalgenesinreclaimedsoilwithorganicfertilizerapplication.Soilmicrocosmicexperimentsweresetupforapplicationoforganic-inorganiccompoundfertilizerandsheepmanure,thenthesoilN2OemissionfluxesafterinoculationofYSQ030wereanalyzedbygaschromatography.Meanwhile,soilchemicalpropertieswereanalyzedattheendoftheexperiment,andtheabundanceofsoilnitrificationanddenitrificationfunctionalgenes(AOAamoAandAOBamoA;nirS,nirK,nosZⅠandnosZⅡ)wereanalyzedbyreal-timequantitativePRC.TheresultsshowedthatYSQ030significantlyreducedtheN2Oemissionofreclaimedsoilwithorganic-inorganiccompoundfertilizerorsheepmanure,withthemaximumreductionofN2Oemissionreaching91.5%and30.9%,respectively.TheN2Oemissionsoforganic-inorganiccompoundfertilizertreatmentweremuchhigherthanthoseofsheepmanuretreatment,whichmaybeduetothelowabundanceofN2OreductasegenesofnosZⅠandnosZⅡintheformertreatment.Furthermore,significantreductionoftheabundanceofnitrificationanddenitrificationfunctionalgeneswereobservedonlyinorganic-inorganiccompoundfertilizertreatments.ThisstudyshowsthatYSQ030canreducetheN2Oemissioninsoilappliedwithorganicfertilizer,whichcanprovideascientificbasisforbothsoilfertilityimprovementandN2Oemissionreduction,andalsoprovidecorestrainresourcesfortheresearchanddevelopmentofnewmicrobialfertilizersorbio-organicfertilizers.
Keywordsmicrobialfertilizer;organicfertilizer;nitrousoxide(N2O);plantgrowth-promotingrhizobacteria(PGPR);greenhousegasmitigation