基于BP神经网络的深部巷道围岩力学参数反分析

2024-05-23 03:49李坤铎
湖北工业大学学报 2024年2期
关键词:BP神经网络

李坤铎

[摘要] 基于BP神经网络算法原理,借助matlabR2021b神经网络工具箱建立深部巷道围岩力学参数位移反分析模型,利用正交试验和Flac3D数值模拟软件建立神经网络的学习训练样本,对深部巷道的四个围岩力学参数粘聚力C、内摩擦角φ、泊松比ν、弹性模量E进行反演计算。结果表明:将参数反演结果代入Flac3D有限元数值模拟软件,计算出的巷道拱顶沉降和两帮收敛值与实际监测值相比非常接近,相对误差小、精度高。通过这种方法获取的围岩力学参数是有价值的,可以较为精确地获取深部巷道的围岩力学参数,从而为深部巷道的稳定性分析及巷道支护设计提供科学依据。

[关键词] BP神经网络; FLAC3D数值模拟;巷道施工

[中圖分类号] TQ320.6[文献标识码] A

猜你喜欢
BP神经网络
基于神经网络的北京市房价预测研究
一种基于OpenCV的车牌识别方法
基于遗传算法—BP神经网络的乳腺肿瘤辅助诊断模型
一种基于改进BP神经网络预测T/R组件温度的方法
基于BP神经网络的光通信系统故障诊断
提高BP神经网络学习速率的算法研究
就bp神经网络银行选址模型的相关研究
基于DEA—GA—BP的建设工程评标方法研究
复杂背景下的手势识别方法
BP神经网络在软件质量评价中的应用研究 