丁聪 刘杨 阳莺 沈瑞刚
摘要: 利用虚单元方法在多面体网格上求解一种三维稳态Poisson-Nernst-Planck(PNP)方程, 并给出PNP方程的虚单元离散形式, 推导电势方程及离子浓度方程的刚度矩阵与荷载向量的矩阵表达式. 数值实验结果表明, 在3种不同的多面体网格下实现了PNP方程的虚单元计算, 数值解在L2和H1范数下均达到最优阶.
关键词: Poisson-Nernst-Planck方程; 虚单元方法; 多面体网格; 三维
中图分类号: O241.82文献标志码: A文章編号: 1671-5489(2024)02-0293-09
Virtual Element Computation for a Three-Dimensional Poisson-Nernst-Planck Equations
DING Cong1, LIU Yang2, YANG Ying1, SHEN Ruigang1
(1. Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation, Guangxi Applied Mathematics Center (GUET), School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin 541004, Guangxi Zhuang Autonomous Region, China;2. School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, Hunan Province, China)
Abstract: The virtual element method was used to solve a three-dimensional steady-state Poisson-Nernst-Planck (PNP) equations on polyhedral meshes. The virtual element discrete forms of the PNP equations were given, and the matrix expressions of the stiffness matrix and the load vector of the electric potential equation and ion concentration equation were derived. The numerical experimental results show that the virtual element computation of PNP equations is realized in three different polyhedral meshes, and the numerical solutions reach the optimal order in both L2 and H2 norms.
Keywords: Poisson-Nernst-Planck equation; virtual element method; polyhedral mesh; three-dimension
PNP(Poisson-Nernst-Planck)方程[1]是由Poisson方程和NP(Nernst-Planck)方程耦合而成的一类非线性偏微分方程系统, 常用于描述电扩散反应过程, 在半导体[2]、 电化学系统[3]和生物膜通道[4]等领域应用广泛.
PNP方程因其自身的强耦合性和非线性性, 使得对该方程的求解较困难, 且在极少情况下有解析解. 早期求解PNP方程的主要方法为有限元[5]、 有限差分[6]和有限体积[7]等方法, 其中: 有限差分法易于编程实现, 但不适用于非规则区域; 有限体积法能处理非结构化网格和复杂的边界条件, 但由于高阶控制体设计困难, 因此很难达到较高的精度; 有限元方法因适用于处理不规则几何形状区域和复杂边界问题而被广泛应用, 在求解一些PNP 方程中取得了很好的效果. 但经典的有限元方法精度依赖于网格质量, 对具有复杂界面的PNP方程效果不佳. Beiro等[8]提出的虚单元法具有更好的网格适应性, 对于多边形或多面体单元, 甚至包含非凸单元组成的网格剖分, 虚单元法都可以进行灵活计算; 文献[9]阐述了虚单元方法的理论发展, 通过介绍虚单元方法在Poisson方程、 线弹性、 非线性等问题中的应用, 展现了虚单元方法在工程科学计算领域的巨大潜力; 刘杨[10]对一类二维PNP方程设计了相应的虚单元格式, 并给出了其在H1范数下的误差估计; Su等[11]在多面体网格上提出了PNP方程的保正和自由能耗散混合格式, 并给出了离子浓度的正性及自由能耗散等性质, 但仅对Poisson方程使用虚单元法, 而对NP方程采用有限体积法求解.
本文采用虚单元方法计算三维稳态PNP方程, 介绍了虚单元空间、 自由度以及虚单元方法中三类投影算子的定义, 给出三维稳态PNP方程的虚单元离散形式, 并利用投影算子的张量形式对虚单元离散下PNP方程的刚度矩阵和荷载向量矩阵给出表达式. 将PNP耦合系统解耦成单个的子方程进行求解, 对Poisson方程的虚单元解h的梯度利用虚单元投影算子做近似, 再代入NP方程的非线性项中形成耦合迭代. 进行三维PNP模型问题的数值实验结果表明, 虚单元解在L2和H1范数下都达到最优阶, 说明虚单元方法对于三维稳态PNP方程的计算有效.
综上所述, 本文将虚单元方法应用于三维稳态[WTBZ]PNP方程的计算, 给出了PNP方程的虚单元离散格式, 以及电势方程与离子浓度方程的刚度矩阵和荷载矩阵的形式. 数值实验结果表明, 六面体网格、 四面体网格和Voronoi网格下的虚单元解的L2模误差达到2阶收敛阶, H1模误差的收敛阶达到1阶收敛阶. 实验结果表明了虚单元法在多面体网格下求解三维稳态PNP方程的有效性. 此外, 该方法还可以应用到时间相关的PNP方程以及更复杂的离子通道PNP方程[1]中.
参考文献
[1]YANG Y, TANG M, LIU C, et al. Superonvergent Gradient Recovery for Nonlinear Poisson-Nernst-Planck Equations with Applications to the Ion Channel Problem [J]. Advances in Computational Mathematics, 2020, 46(6): 78-1-78-35.
[2]GAJEWSKI H, JEROME J W. Analysis of Charge Transport: A Mathematical Study of Semiconductor Devices [M]. New York: Springer-Verlag, 1996: 14-18.
[3]MARCICKI J, CONLISK A T, RIZZONI G. Comparison of Limiting Descriptions of the Electrical Double Layer Using a Simplified Lithium-Ion Battery Model [J]. ECS Transactions, 2012, 41(14): 9-21.
[4]EISENBERG B, HYON Y, LIU C. Energy Variational Analysis of Ions in Water and Channels: Field Theory for Primitive Models of Complex Ionic Fluids [J]. The Journal of Chemical Physics, 2010, 133(10): 104104-1-104104-23.
[5]LU B Z, HOLST M J, McCAMMON J A, et al. Poisson-Nernst-Planck Equations for Simulating Biomolecular Diffusion-Reaction Processes Ⅰ: Finite Element Solutions [J]. Journal of Computational Physics, 2010, 229(19): 6979-6994.
[6]FLAVELL A, MACHEN M, EISENBERG B, et al. A Conservative Finite Difference Scheme for Poisson-Nernst-Planck Equations [J]. Journal of Computational Electronics, 2014, 13: 235-249.
[7]FUHRMANN J. Activity Based Finite Volume Methods for Generalised Nernst-Planck-Poisson Systems [M]. [S.l.]: Springer, 2014: 597-605.
[8]BEIRO DA VEIGA L, BREZZI F, CANGIANI A, et al. Basic Principles of Virtual Element Methods [J]. Mathematical Models and Methods in Applied Sciences, 2013, 23(1): 199-214.
[9]劉传奇, 许广涛, 魏宇杰. 虚单元计算方法的最新理论与应用进展 [J]. 力学进展, 2022, 52(4): 874-913. (LIU C Q, XU G T, WEI Y J. Virtual Element Method: Theory and Applications [J]. Advances in Mechanics, 2022, 52(4): 874-913.)
[10]刘杨. 二维稳态Poisson-Nernst-Planck方程的一种虚单元方法 [D]. 湘潭: 湘潭大学, 2020. (LIU Y. A Virtual Element Method for Two-Dimensional Steady-State Poisson-Nernst-Planck Equations [D]. Xiangtan: Xiangtan University, 2020.)
[11]SU S, TANG H Z. A Positivity-Preserving and Free Energy Dissipative Hybrid Scheme for the Poisson-Nernst-Planck Equations on Polygonal and Polyhedral Meshes [J]. Computers & Mathematics with Applications, 2022, 108: 33-48.
[12]BEIRO DA VEIGA L, BREZZI F, MARINI L D, et al. Virtual Element Method for General Second-Order Elliptic Problems on Polygonal Meshes [J]. Mathematical Models and Methods in Applied Sciences, 2016, 26(4): 729-750.
[13]BEIRO DA VEIGA L, BREZZI F, MARINI L D, et al. The Hitchhikers Guide to the Virtual Element Method [J]. Mathematical Models and Methods in Applied Sciences, 2014, 24(8): 1541-1573.
[14]AHMAD B, ALSAEDI A, BREZZI F, et al. Equivalent Projectors for Virtual Element Methods [J]. Computers & Mathematics with Applications, 2013, 66(3): 376-391.
[15]BEIRO DA VEIGA L, LOVADINA C, RUSSO A. Stability Analysis for the Virtual Element Method [J]. Mathematical Models and Methods in Applied Sciences, 2017, 27(13): 2557-2594.
[16]LIU Y, SHU S, WEI H Y, et al. A Virtual Element Method for the Steady-State Poisson-Nernst-Planck Equations on Polygonal Meshes [J]. Computers & Mathematics with Applications, 2021, 102: 95-112.
[17]YANG Y, LU B Z, XIE Y. A Decoupling Two-Grid Method for the Steady-State Poisson-Nernst-Planck Equations [J]. Journal of Computational Mathematics, 2019, 37(4): 556-578.
(责任编辑: 赵立芹)
收稿日期: 2023-06-27.
第一作者简介: 丁 聪(1998—), 男, 汉族, 硕士研究生, 从事偏微分方程数值求解的研究, E-mail: dingcongup@qq.com.
通信作者简介: 阳 莺(1976—), 女, 汉族, 博士, 教授, 从事偏微分方程数值求解的研究, E-mail: yangying@lsec.cc.ac.cn.
基金项目: 廣西科技基地和人才专项基金(批准号: 桂科AD23026048)和国家自然科学基金(批准号: NSFC12161026; 12101595).