田 甜,杨明夏
南京医科大学附属常州第二人民医院呼吸科,江苏 常州 213003
原发性肺癌是近几十年来最常见的恶性肿瘤之一,严重威胁人类健康[1]。它是男性癌症死亡的主要原因,女性癌症死亡的第二大原因。肺癌死亡的全球地理模式与发病率密切相关[2]。与一些西方国家的发病率下降相反,2002—2020年间的我国肺癌发病率[3-4]和疾病负担均逐年提升[5],这与医院医疗水平及诊疗技术不断提高密切相关,但基于肺癌现有发病机制的诊断治疗方法未能改变其早诊早治率低及死亡率高的现状。因此,探讨肿瘤发病机制仍是目前肺癌研究的重点。
近十几年来,针对癌症的代谢重编程重新被关注。自代谢重编程这个概念被定义以来,就一直被认为是癌症进展的关键标志[6]。一些学者定义代谢重编程是基于观察瓦博格效应,即肿瘤中的重要区域表现出乳酸中毒以及葡萄糖(glucose,Glc)消耗增加[7]。与正常分化细胞不同,癌细胞的代谢重编程可以满足其能量需求,癌细胞在许多代谢途径发生了质变,包括Glc 转运、谷氨基溶解、电子转运链和戊糖磷酸途径[8]。代谢重编程不仅为大规模生物合成提供快速复制的物质基础,也为这些过程提供能量[9],同时对细胞有着非代谢效应,包括炎症增加、凋亡抵抗、免疫逃逸以及糖基化终产品的生成和积累,这些效应对病毒复制和肿瘤发生进展有着不可或缺的影响,也可以协助改变细胞生长环境[7]。代谢重编程产生的炎症可以促进更多的代谢重编程和血管生成,为细胞提供更多的营养要素,从而维持高水平的生物合成[10]。随着研究进展越来越深入,代谢重编程的定义已经远远不止于“瓦博格效应[11]”。
代谢重编程是目前肿瘤研究中的热点,本文对目前代谢重编程相关最新研究进展进行综述,重点关注肺癌中Glc 代谢、谷氨酰胺(glutamine,Gln)代谢、脂肪代谢和其他代谢等相关代谢重编程的发生机制,并利用对代谢重编程的研究,探寻针对代谢途径的治疗药物在临床应用的可行性。
Glc 代谢是癌症生物学中的一个重要组成部分。癌细胞表现出不受限制的生长,通过代谢适应促进其生存。Glc 通过糖酵解途径转化为丙酮酸,然后将丙酮酸转化为乙酰辅酶A,而后在三羧酸(tricarboxylic acid,TCA)循环中氧化,产生电子传输链使用的还原当量,即NADH和FADH,电子传输链在线粒体膜上产生H+的电化学梯度,用于推动ATP的合成。或者,乳酸脱氢酶(lactic dehydrogenase,LDH)将丙酮酸转化为乳酸(lactic acid,Lac),作为糖酵解的最终产物。
糖酵解是细胞中产生能量的核心途径,研究发现,即使在正常情况下(即有足够的氧气),癌细胞更倾向耗氧糖酵解,这一现象即“瓦博格效应[11]”,意味着癌细胞利用充足的糖酵解可以生产更多的ATP,并快速地大规模产生生物合成所需的大量中间体,且具有适当的ATP/ADP 比率。糖酵解在保持氧化还原平衡和调节染色质状态方面发挥着重要作用,并在一定程度上创造了一个低免疫力微环境,给癌细胞入侵提供了机会[12]。可以说,肿瘤细胞依赖糖酵解。
LDH 作为糖酵解关键酶之一,在正常条件下,LDH 减少的细胞增殖速度迟缓;在缺氧条件下,LDH 活性降低的细胞无法维持高ATP 水平。不论O2是否限制,肿瘤细胞都依赖LDH活性,且缺氧环境中的肿瘤细胞更加高度依赖LDH活性,LDH缺乏则损害肿瘤细胞的致癌潜力[13]。LDH在健康人血清中处于较低的水平,而其浓度增加可能反映各种病理状况,如溶血、横纹肌溶解、心肌梗死、肿瘤。因为LDH 与肿瘤负担引起的癌细胞和组织损伤有关,所以认为它可能具有诊断肿瘤的潜力。研究发现,90%诊断为非小细胞肺癌(non-small-cell lung cancer,NSCLC)的患者表达LDH,而LDH 在非肿瘤组织中表达呈阴性。并且分析表明,LDH在预测肺癌预后中也起到关键作用,治疗前NSCLC 和小细胞肺癌(small-cell lung cancer,SCLC)患者血清中的LDH高含量与低生存率有关,而且NSCLC 患者血清中的LDH与无进展生存期呈负相关。因此,可以得出在肺癌中LDH高表达与预后不良有关,并可能与常规化疗治疗效果不佳有关[14]。
在糖酵解过程中,LDH将丙酮酸转化为Lac,而鼠类肉瘤病毒基因(Kirsten rat scarcoma viral oncogene,KRAS)信号转导则可以促进糖酵解衍生的丙酮酸快速还原为Lac,KRAS 突变(KRAS mutant,KM)是肺癌中很常见的突变,其驱动生物合成和氧化还原反应,并通过增加Glc 摄取和糖酵解为肺癌细胞提供竞争优势,即由KRAS 驱动的糖酵解支持肺癌恶性进展,并与预后较差相关。另一方面,在肺转移肿瘤微环境(tumor microenvironment,TME)中,Lac诱导了浸润性自然杀伤(natural killer,NK)细胞的凋亡[15],在一定程度上损害了机体的免疫功能。研究发现肿瘤源性外泌体(tumor-derived exosome,TDE)是小型细胞外囊泡,包含来自其母细胞的RNA、DNA、蛋白质、代谢物和微小RNA。小鼠和人类的最新研究表明,免疫检查点分子程序性死亡配体-1(programmed cell death protein ligand 1,PD-L1)在TDE上的表达有助于系统性免疫抑制,提高整体肿瘤负担,并降低各种类型肿瘤患者的生存率。TDE可通过NF-κB介导的巨噬细胞糖酵解代谢重塑来驱动其向转移前微环镜中的免疫抑制表型分化,从而产生免疫抑制表型[16]。
Lac和丙酮酸可以通过诱导各种信号通路及分子来驱动和促进肿瘤细胞的迁移和侵袭[7]。研究表明,NSCLC细胞与正常细胞相比,在Glc利用率和提供Glc 的途径方面差异很大[17]。癌组织中的Glc 含量明显高于癌旁组织。随着癌组织中Glc含量的增加,患者的存活率下降[18]。瓦博格效应不是肿瘤细胞的普遍特征,Lac/Glc 与生长速度的相关性较低。肺癌细胞增长率与Glc 的消耗量无关,但它确实与Gln 消耗相关,表明癌细胞可以同时利用这两种主要营养素[17]。
依赖Gln的外源性供应是许多癌细胞的另一个代谢特征。Gln 是一种丰富且多功能的营养素,参与能量合成、氧化还原稳态、大分子合成和癌细胞的信号转导等。它经谷氨酰胺酶催化为谷氨酸,然后由谷氨酸脱氢酶转化为α-酮戊二酸盐,进入TCA循环。此外,α-酮戊二酸酯也可以在异柠檬酸脱氢酶1的作用下,在细胞质中羧化为柠檬酸,参与脂肪酸的合成。α-酮戊二酸酯还可以在催化Gln过程中产生,以促进非必需氨基酸的生产。Gln 代谢产生的谷氨酸可以直接与脯氨酸和谷胱甘肽(glutathione,GSH)生物合成途径结合,以保持细胞内氧化还原平衡[19]。
近年来研究发现,Gln 是癌细胞线粒体能量的重要来源之一,也是循环中最丰富的游离氨基酸,其是碳和氮的来源,支持肿瘤细胞的生物合成、能量代谢和维持细胞内稳态[20]。但是肿瘤细胞更倾向于积累谷氨酸,对Gln 的合成率小于消耗率[21]。与结肠癌或胃癌等相比,肺癌组织中的Gln表达水平较高[22]。表皮生长因子受体(epidermal growth factor receptor,EGFR)-酪氨酸激酶抑制剂(tyrosine kinase inhibitor,TKI)耐药肺癌细胞(如HCC827 GR 和H292 ER)的生长取决于Gln。在HCC827 GR 中,Gln 缺乏导致GSH 合成减少;在H292 ER 中,Gln 主要作为TCA循环中间体的碳源,其消耗导致线粒体ATP的产生减少[23]。
近年来,关于肺癌Gln代谢的研究逐渐增多,如血管生成素样蛋白4(angioprotein-like protein 4,ANGPTL4)作为调节代谢疾病中脂质和葡萄糖代谢的关键因素,可以促进NSCLC 中Gln 的消耗和脂肪酸氧化,但不能促进糖酵解或加速NSCLC的能量代谢[24]。临床数据显示,肺腺癌(lung adenocarcinoma,LUAD)的肿瘤细胞有着活跃的Gln 代谢,继而其浸润的T细胞也表现出活跃的Gln代谢,Ephrin B型受体2(Ephrin type-B receptor 2,EPHB2)是Gln 代谢的关键基因,被证明其可以在吞噬细胞中高度表达,促进LUAD细胞的增殖、入侵和迁移[25]。Liu等[26]发现LUAD 细胞的Gln 代谢可被癌症相关成纤维细胞(cancer-associated fibroblast,CAF)增强。由CAF 衍生的外泌体RNA 在一定程度上可以介导LUAD 细胞中Gln 摄入的增强,而阻断外泌体传播可以抑制Gln 成瘾和体内LUAD 生长。临床上,此外泌体RNA表达量与LUAD患者的Gln代谢和预后不佳有着密切联系。
为了改善肺癌患者的预后,Gln代谢途径的靶向治疗则成了热点。最新研究发现Kelch样环氧氯丙烷相关蛋白1(Kelch-like epichlorohydrin-associated protein 1,KEAP1)/核转录因子E2相关因子2(nuclear factor-E2 related factor,NRF2)轴的失调改变了代谢要求[27],使肺癌细胞对Gln代谢抑制剂更加敏感,在此基础上进一步研究发现KEAP1 的丢失为肝激酶B1(liver kinase B1,LKB1)-腺苷酸活化蛋白激酶(AMP-activted protein kinase,AMPK)轴功能失活的肿瘤提供了适应性优势,并驱动KRAS 突变的肺癌细胞代谢重编程。LKB1是NSCLC中第二常见的肿瘤抑制剂,LKB1-AMPK 轴在调节细胞生长和增殖以保持足够的ATP 和NADPH 水平方面发挥着关键作用,总之,LKB1 和KEAP1/NRF2 途径合作驱动代谢重编程,并在体外和体内增强对谷氨酰胺酶抑制剂CB-839的敏感性,这表明谷氨酰胺酶抑制剂是具有潜在前途的肿瘤治疗策略之一。
He 等[20]发现,Gln 的缺乏会导致S 期的细胞停滞,Gln的剥夺则会导致肿瘤细胞死亡。Gln代谢与患者的预后及生存率密切相关,患者独特的代谢特征在指导个性化治疗中将会发挥重要作用。
脂质代谢失调是癌症中突出的代谢改变之一。癌细胞利用脂质代谢获得增殖、存活、侵袭、转移所需的能量、生物膜成分和信号分子[28]。癌细胞通过两种机制获得脂质和脂蛋白:从其局部微环境中吸收外源性脂质和新合成内源性脂质分子。脂肪酸(fatty acid,FA)是癌细胞膜形成、能量储存和信号分子产生的基础。脂肪酸氧化(fatty acid oxidation,FAO)途径实现了脂质分解代谢。KM调节FA代谢,有证据表明,KARS 突变肺癌(KARS-mutant lung cancer,KMLC)具有特定的脂质分布,包括高甘油三酯和磷脂酰胆碱[29]。KMLC或许可以通过增强脂质合成、储存和分解,使FA 代谢能够维持肿瘤发生、发展。
脂质代谢过程中有许多关键酶,包括脂肪酸合成酶(fatty acid synthase,FASN)、Stearoyl CoA脱饱和酶1、ATP 柠檬酸裂解酶等。FASN 在肺癌中的表达与预后较差有关[30],其在早期肺癌中的过度表达可能是攻击性信号。阻断FASN 会促进铁死亡,这是一种依赖活性氧(reactive oxygen species,ROS)和铁的细胞死亡,而KM则需要合成新的FA来逃避铁死亡,那么铁死亡的诱导剂则可能会在KMLC 中发挥抗肿瘤作用[29]。泛素特异性肽酶18(ubiguitin specific peptidase 18,USP18)是脂质和FA 代谢的调节剂,USP18 缺失可以抑制脂肪甘油三酯脂肪酶(adipose triglyceride lipase,ATGL)表达,USP18高表达则可在肺癌细胞中上调甘油三酯脂肪酶(adipose triglyceride lipase,ATGL)。USP18 有望成为影响肺癌FA代谢的抗肿瘤靶点[30]。另有体外研究表明[31],抑制ATP 柠檬酸裂解酶可以限制肿瘤增殖并诱导细胞分化。综上,通过调节脂质代谢过程中的关键酶可以在一定程度上影响肿瘤的生长。
激酶信号转导失调是多种情况下致癌生长的重要驱动力。丝裂原活化蛋白激酶5(mitogen activated protein kinase 5,MEK5)/细胞外信号调节激酶5(extracellular signal-regulated kinase 5,ERK5)轴的丧失扰乱了几种脂质代谢途径,包括控制胆固醇合成的甲烷酸途径。值得注意的是,在SCLC细胞中,MEK5/ERK5轴通过低剂量的他汀类药物进一步抑制甲戊酸途径,在一定程度上促进SCLC的生长[32]。固醇调节剂结合转录因子1 对鳞状细胞癌(squamous-cell carcinoma,SCC)的生存能力和迁移至关重要,其过度表达与SCC 患者的生存能力差有关,是SCC潜在的治疗靶点和预后标志物[33]。
脂质代谢和糖代谢密不可分,如在癌症基因组图谱数据集中搜索LUAD相关数据并构建代谢重编程表型[34],发现糖酵解相关的信号通路富含上调的差异表达(differential expression,DE)基因,相比之下脂质代谢富含下调的DE 基因,意味着脂质代谢在LUAD 转移中可能与糖酵解的作用不同,从构建的表型代谢分析和转录轨迹可以发现,糖酵解和脂质代谢的不平衡可能参与LUAD 转移,这为防止LUAD转移提供了可能的治疗策略。
脂质代谢在不同类型细胞中失调,改变最多的脂质代谢相关途径即甘油磷脂代谢。依据部分脂质在早期肺癌组织中的表达不同,可以早期发现肺癌或大规模筛查高危人群以预防癌症[35]。SB-204990是一种有效的、选择性的腺苷5′-三磷酸柠檬酸裂解酶(adenosine 5′-triphosphate citrate lyase,ACLY)抑制剂,可降低细胞质乙酰辅酶A(Acetyl CoA,AcCoA)。SB-204990 被发现在体外和体内抑制NSCLC A549 细胞和前列腺癌PC3 细胞的生长[36]。以上证据表明,脂质代谢在癌症中产生了实质性的重编程。
丝氨酸甘氨酸和单碳代谢[37](serine glycine and one-carbon pathway,SGOCP)是由辅因子叶酸支持的代谢过程,用于转移一碳单元进行关键的生物合成过程,包括核苷酸生物合成、各种甲基化反应、氧化还原稳态等。丝氨酸作为其主要单碳供体,是单碳代谢的枢纽,也会被快速增殖的细胞迅速消耗,如癌细胞。L-丝氨酸合成途径的关键酶之一磷酸丝氨酸磷酸酶(phosphoserine phosphatase,PSPH),通过非经典的L-丝氨酸非依赖性通路促进肺癌的进展。PSPH 与肺癌患者的预后显著相关,并调节肺癌细胞的侵袭和集落形成[38]。丝氨酸转运蛋白SFXN1在LUAD和肺鳞癌组织中均有中度以上的表达,而在正常肺组织中几乎不表达,分期越晚的肺癌组织其表达量越高,且其高表达与LUAD 患者不良预后相关[39]。甲硫氨酸和叶酸循环是单碳代谢中至关重要的关联途径,为DNA、氨基酸、肌酸、多巴胺和磷脂的产生提供甲基。核苷酸代谢以及DNA 和组蛋白的表观遗传调节异常是肿瘤细胞的另一个显著特征[40]。
嘌呤和嘧啶核苷酸的合成通过两种不同的途径进行:从头合成途径和挽救途径[40]。嘧啶从头合成途径首先建立芳香碱,然后在磷酸异丙基焦磷酸(phosphoribosyl pyrophosphate,PRPP)依赖性反应中添加核糖5-磷酸盐部分,而嘌呤从头合成途径从PRPP 开始,并将芳香碱建立在核糖骨架上。细胞内核苷酸的超生理丰度有助于癌细胞不受控制地增殖、免疫逃避、转移和耐药[41]。核苷酸合成抑制剂是最早发现的抗肿瘤药物之一。DNA聚合酶ζ在肺癌组织中高表达,聚合酶ζ的过度表达降低了放射敏感性,抑制了细胞凋亡,并减少了氧化应激;而聚合酶ζ的低表达则表现出相反的效果。以此为理论基础,DNA 聚合酶ζ抑制剂可以提高肺癌细胞对放射治疗的敏感性[42]。研究发现环状RNA(circRNA)是一类共价闭合的单链RNA,circNDUFB2 在NSCLC组织中下调,并与NSCLC的恶性特征呈负相关[43]。早期研究表明[44],DNMT3A编码了从头合成DNA 甲基转移酶,DNMT3A 在人类SCLC 中经常发生突变,DNMT3A 缺失可能导致DNA 低甲基化,继而激活SCLC 中的转移基因;DNMT3A 过表达则会导致SCLC 肿瘤类器官的数量显著减少,即在一定程度上抑制转移。但目前DNMT3 基因抑制肺癌的潜在功能尚不明确。最新研究发现KMT2C(一种组蛋白H3 赖氨酸4 甲基转移酶)通过组蛋白甲基化直接调节DNMT3A,KMT2C 的缺乏可以促进SCLC 转移。
ROS 可以损害脂质、核酸和蛋白质,从而改变它们的功能。当ROS 的生成和抗氧化之间的平衡被打破时,就会出现氧化应激现象。氧化多不饱和脂肪酸在胸腔积液中上调,意味着肺癌患者具有较多的氧化应激和过氧化物酶体紊乱情况[45]。研究表明[42],ROS 和转化生长因子(transforming growth factor,TGF)-β信号转导的代谢重编程发生在肺癌细胞和成纤维细胞中,与α-肌动蛋白(α-smooth muscle actin,α-SMA)诱导无关。肿瘤细胞和成纤维细胞在共培养条件下,癌症相关成纤维细胞糖酵解能力增加,同时肿瘤细胞改善了成纤维细胞的线粒体功能。此外,肿瘤细胞诱导这种代谢转变的不同能力,以及基底成纤维细胞氧化磷酸化(oxidative phosphorylation,OXPHOS)功能改变,可能影响患者的诊断和预后。对所涉机制的进一步了解有助于探索开发新的疗法。线粒体的新陈代谢和功能会被癌基因和肿瘤抑制剂改变,如MYC、RAS、mTOR、HIF-1α和TP53。线粒体代谢也可能受到核编码线粒体酶直接突变的影响,主要是异柠檬酸脱氢酶1/2(isocitrate dehydrogenase 1/2,IDH1/2)、琥珀酸脱氢酶(succinate dehydrogenase,SDH)和富马酸氢酶(fumarate hydrogenase,FH)。这些酶的突变分别导致各自的肿瘤代谢物(α-羟基戊二酸、琥珀酸盐和富马酸盐)的堆积,这有助于肿瘤转移[46]。
花生四烯酸(arachidonic acid,AA)代谢途径通过长散布核元件1(long interspersed nuclear element-1,LINE-1,L1)-富含FGGY 碳水化合物激酶结构域蛋白(carbohydrate kinase domain containing,FGGY)嵌合转录物的丢失被激活,以促进肿瘤生长,这是抗人免疫缺陷病毒药物和代谢抑制剂(ML355)联合使用的理论基础[47]。
热休克蛋白家族HSP70 过度表达也被证明可以增加肿瘤细胞中的糖酵解代谢,HSP70 的抑制剂小分子吡啉-μ在NSCLC 中表现出抗肿瘤活性,HSP90 与丙酮酸激酶PKM2、MYC 和AKT 相互作用以调节糖酵解。此外,HSP90 可以调节EGFR 突变肺癌细胞中肝细胞生长因子诱导的对EGFR-TKI的耐药性,HSP90 对17-DMAG 的抑制降低了EGFR 和MET 的表达,并降低了血管生成[48]。在肺鳞癌中,HSP90 抑制剂17-AAG 已被证明通过下调胸苷磷酸化酶来增强埃洛替尼和他莫昔芬的细胞毒性[49]。然而,最近一项针对晚期NSCLC 患者的试验显示,除了多烯紫杉醇外,使用HSP90抑制剂甘奈斯匹布治疗的患者生存率并没有任何改善[50]。
代谢重编程对肿瘤至关重要,肿瘤细胞需要大量摄取Glc和Gln等以适应性调整营养获取模式,且在一定程度上与TME 相互作用,研究这些代谢特性,有助于开发针对关键代谢酶和途径的小分子药物,为临床治疗用药提供思路。
目前国内外研究团队正在开发新的肿瘤治疗方案,包括糖酵解抑制剂(如2-脱氧-d-葡萄糖),针对TCA 循环和OXPHOS 途径的靶向药物(如复合I抑制剂二甲双胍或苯甲双胍),Gln 和FA 代谢抑制剂,以及针对核苷酸生物合成的靶向药物。然而,代谢的可塑性和灵活性可能会限制这些抗代谢疗法的疗效,这意味着需要同时靶向多个代谢途径,或结合干扰致癌信号途径(如KRAS或MYC),以增强治疗效果并避免耐药性的出现。
抑制代谢途径中关键代谢酶的活性具有很大潜力。然而,由于它们在正常细胞中的生理作用,靶向这些酶可能对机体产生不良反应,最优的方式是只针对肿瘤细胞的新陈代谢,而不影响转化细胞或非肿瘤组织的细胞。近几年与肺癌代谢相关的研究进展远远低于预期,每种代谢途径及其特定的调节机制都需要进一步研究,目前只有针对部分代谢途径的抗肿瘤药物正在临床试验中,寻找更多具有特异性的有效抑制剂仍然任重道远。随着转录组学、蛋白质组学和代谢组学等的应用,研究抗肿瘤药物在细胞和生物水平上的特异性和有效性将成为可能。