基于全连接神经网络的线上交易欺诈检测方法

2024-05-02 15:48李振耀宋媛媛
电脑知识与技术 2024年5期
关键词:深度学习

李振耀 宋媛媛

摘要:随着互联网的迅速发展,电子商务和互联网金融呈现快速发展趋势,同时也带来了严重的线上交易欺诈问题。针对线上交易数据的不平衡性,提出了一种利用深度学习神经网络的方法检测线上交易中的欺诈。该方法首先通过SMOTEENN混合采样获得平衡数据集,以提高模型的泛化能力和鲁棒性,然后使用多个不同神经元数量的全连接层,提取并学习输入数据中更高级别的特征,最后利用平衡处理后的数据,训练上述所设计的分类模型,并进行模型评估。实验結果表明,该方法在不平衡分类的各项评价指标F-means、G-means、AUC值、精确率和召回率下,均明显优于常见的线上交易欺诈检测模型,显著提高了线上交易欺诈检测的准确性。

关键词:线上欺诈检测;深度学习;SMOTEENN;数据不平衡

中图分类号:TP18 文献标识码:A

文章编号:1009-3044(2024)05-0001-03

猜你喜欢
深度学习
从合坐走向合学:浅议新学习模式的构建
面向大数据远程开放实验平台构建研究
基于自动智能分类器的图书馆乱架图书检测
搭建深度学习的三级阶梯
有体验的学习才是有意义的学习
电子商务中基于深度学习的虚假交易识别研究
利用网络技术促进学生深度学习的几大策略
MOOC与翻转课堂融合的深度学习场域建构
大数据技术在反恐怖主义中的应用展望
深度学习算法应用于岩石图像处理的可行性研究