黄其椿 汪妮娜 黄燕晓 张海平 黄爱星 谭颂玥 韦正林 梁增 韦琮 韦炳安 陈亮 罗增桂 胡承孝 陈东奎 覃泽林 曾志康
摘 要:【目的】研究广西沃柑果实横径的生长动态并构建数学模型,为提升其品质和产量提供科学依据。【方法】以沃柑为材料,于稳果后,连续两年每月1日、15日通过“定园、定点、定果、定期”的方法测量并记录广西桂南、桂中、桂北15个果园的沃柑横径数据,直至采收期,研究沃柑横径的变化动态,考察年终横径与各生长节点,月度横径增加值与主要气象信息的相关性并建立数学模型。【结果】各个果园最终的横径差别较大,达到极显著差异水平,多个果园的横径有待提升;对比气象数据,选定2021—2022年度的沃柑横径数据为正常年份数据,翌年1月15日果实横径平均值为69.85 mm,最高的果园达75.33 mm,最小的61.55 mm;以80、75、70、65、60、55 mm为等级,构建桂南、桂北和桂中沃柑果实横径生长动态对照表、横径月度增加值对照表;分别建立年终沃柑横径数值与各生长节点,横径月度增加值与主要月度气象信息的数学模型,年终横径与7月15日呈显著正相关,与8月15日以后呈极显著正相关,至11月1日达到极显著的0.934 0;月度增加值与降雨、温度相关系数分别为显著的0.791 8和极显著的0.879 1。【结论】广西沃柑提质增产仍存在较大空间,可结合当期横径生长对照表、定期差值对照表,科学合理安排水肥药的灌溉来进一步加速果实膨大,从而提升效益。
关键词:柑橘;广西沃柑;果实横径;生长动态;数学模型
中图分类号:S666.1 文献标志码:A 文章编号:1009-9980(2024)04-0764-13
Dynamics and modeling of fruit transverse diameter growth in Guangxi Orah
HUANG Qichun1, 2, WANG Nina1#, HUANG Yanxiao1, ZHANG Haiping3, HUANG Aixing4, TAN Song-
yue1, WEI Zhenglin5, LIANG Zeng6, WEI Cong7, WEI Bingan8, CHEN Liang9, LUO Zenggui10, HU Chengxiao2, CHEN Dongkui1, 11, QIN Zelin12, ZENG Zhikang12*
(1Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, Guangxi, China; 2College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei, China; 3Guilin Agricultural Science Research Center, Guilin 541006, Guangxi, China; 4Wuming District Meteorological Bureau of Nanning City, Nanning 530199, Guangxi, China; 5Guangxi Mingming Fruit Industry Co., Ltd., Nanning 530199, Guangxi, China; 6Guangxi Guijie Agricultural Development Co., Ltd., Nanning 530041, Guangxi, China; 7Laibin Honghe Farm Co., Ltd., Laibin 546100, Guangxi, China; 8Guangxi Jinzhupo Agricultural Science and Technology Co., Ltd., Nanning 530047, Guangxi, China; 9Guangxi Nanning Wuming Jiawo Agricultural Professional Cooperative, Nanning 530104, Guangxi, China; 10Guangxi Qifeng Juzhou Ecological Agriculture Co., Ltd., Nanning 530199, Guangxi, China; 11Wuming Observatory of National Germplasm Resources, Nanning 530107, Guangxi, China; 12Institute of Agricultural Science and Technology Information, Guangxi Academy of Agricultural Sciences, Nanning 530007, Guangxi, China)
Abstract: 【Objectives】 Orah is the most popular citrus variety in Guangxi in recent years because of its beautiful appearance, juicy fruit, crisp taste, early fruiting, high yield, endurable storage and long harvest period. This paper aimed to study the growth dynamics of Guangxi Orah fruit transverse diameter and its mathematical modeling, so as to provide a scientific basis for improving its quality and yield. 【Methods】 After Orah fruit set, the data of fruit transverse diameters of Orah from 15 orchards in southern, central and northern Guangxi were measured and recorded until the harvest period by using the method of "fixed an orchard, fixed a point, fixed a fruit and fixed a period" on the 1st and 15th day of each month for two consecutive years, in order to study the variation of transverse diameter growth of Orah, and investigate the correlation between the year-end transverse diameter and each growth stage, monthly transverse diameter growth and main meteorological information for mathematical modeling. 【Results】 The final transverse diameters in different orchards were very different, reaching a very significant level, and the transverse diameters in many orchards needed to be improved. In the data of 225 transverse diameters (d) of Orah in 15 orchards during 2021—2022, on January 15, Orah fruit size (d ≥80 mm) accounted for 4.44%; Fruit size (75 mm ≤ d<80 mm) accounted for 14.22%; Fruit size (70 mm ≤d<75 mm) accounted for 32.44%; Fruit size (65 mm ≤ d<70 mm) accounted for 24.00%; Fruit size (60 mm ≤ d<65 mm) accounted for 12.44%; Fruit size (55 mm ≤ d<60 mm) accounted for 4.44%; Fruit size (d<55 mm) accounted for 2.67%, and the minimum transverse diameter was 47.51 mm. In accordance with meteorological data, the transverse diameter data of Orah fruit in 2021—2022 was selected as the normal year data. On January 15th of the following year, the average fruit transverse diameter was 69.85 mm, and the greatest transverse diameter reached 75.33 mm, followed by 74.71 mm. The trees in the above two orchards in main reasons were healthy as a whole, the prevention and control of diseases and pests were done well, organic fertilizer (more than 30 kg of decomposed organic manure applied to each plant every year) and microbial fertilizer were sufficiently applied, water and fertilizer management were supplied in place, and there was reasonable pruning and thinning. The smallest diameter was only 61.55 mm, significantly smaller than that of the other orchards. As the main reasons, there were citrus Huanglongbing, citrus tristeza virus (CTV) and citrus yellow vein clearing virus (CYVCV) as well as macerating root in this orchard. In the investigation from 2022 to 2023, the transverse diameter of the largest Orah fruit was 78.56 mm, followed by 76.79 mm, mainly because these two orchards strengthened the use of organic manure supplemented with water, beneficial microorganisms, minerals and large plant growth regulators on the basis of selecting reasonable water and fertilizer according to this research method, and reasonably pruned and thinned the fruits. The smallest diameter was only 53.74 mm, significantly smaller than that of the other orchards, mainly because the orchard was affected by citrus Huanglongbing, CTV and CYVCV. According to the grades of 80, 75, 70, 65, 60 and 55 mm, we constructed the growth dynamics comparison table of fruit transverse diameters and the monthly increment of transverse diameter in southern, northern and central Guangxi. The mathematical model of year-end transverse diameter and each growth stage was established (R2=0.999 98). The year-end transverse diameter was significantly and positively correlated with July 15th, and extremely significantly and positively correlated with the period after August 15th, reaching a very significant level on November 1st (0.934 0). The mathematical model of monthly increment of transverse diameter and main monthly meteorological information was established (R2=0.845 4). The correlation coefficient between the increment of transverse diameter and rainfall was significant (0.791 8) and the correlation coefficient between the increment of transverse diameter and average temperature was extremely significant (0.879 1), but the correlation coefficient with sunshine hours was only 0.286 6, which indicated that the fruit expansion of Orah was closely related to rainfall and temperature, and more rainfall and higher temperature were beneficial to fruit expansion, but other conditions also affected its development. This also showed that strengthening the management of water, fertilizer and pesticide can help the expansion of Orah fruit, thus improving its quality and yield. 【Conclusions】 There is still much room to improve the quality and yield of Guangxi Orah. In the future, we should vigorously strengthen the virus-free scion and disease-free seedling cultivation. On the basis of deep ploughing, heavy application of organic manure, and paying attention to drainage and reasonable pruning, we can use ampicillin to kill citrus Huanglongbing and canker, strengthen research and explore agricultural chemicals or microorganisms that can effectively cure or prevent CTV and CYVCV. In accordance with the current transverse diameter growth comparison table and the periodic difference comparison table, we can scientifically and reasonably arrange water, fertilizer and pesticide to further accelerate the fruit expansion, thus effectively improving the fruit diameter, yield and economic benefits of Orah and promoting the sustainable growth of the industry.
Key words: Citrus; Guangxi Orah; Fruit transverse diameter; Growth dynamics; Mathematical model
柑橘(Citrus spp.)是我国栽培面积最大的果树,也是广西栽培面积最大、产量最高的果树,产量占广西水果超过一半,2022年广西柑橘栽培面积和产量达63.10万hm2和1 808.04万t,产量连续8 a(年)居全国第一。而沃柑(Orah)具有外观漂亮、汁多爽脆、口感极佳、早结丰产、耐储运及采收期长等特点,是广西近年来发展速度最迅猛的柑橘品种,2022年种植面积达12.13万hm2,约占全国的60%,其中南宁市及武鸣区沃柑种植面积分别为6.13万hm2、3.12万hm2,但存在品质、产量参差不齐,特别是果实大小不一、着色不均的问题[1-2],果实大小不同,严重影响果实的商品价值;因此,值得研究如何达成沃柑优质高产,实现果实品质一流,横径应在70~80 mm之间,可溶性固形物含量(w,后同)超过13%,果皮光滑,橙红色,无明显花斑、无日灼,果实大小、着色均匀。科技人员在研究中开展了有关沃柑果实横径发育的研究。刘要鑫等[3]在南宁市武鸣区对嫁接在枳橙上的沃柑果实品质进行持续3 a(2018—2020年)研究,枳橙砧沃柑的单果质量、挂果数量和部分品质指标优于其他砧木。Huang等[4]研究三个基地沃柑的僵果与正常果时,发现果实横径与单果质量、纵径、糖酸比、维生素C、种子鲜质量、果色红度a*值均呈正相关,在栽培中,重点跟踪横径有利于沃柑提质增产。目前未见广西沃柑果实横径动态生长模型构建的相关报道。通过连续2 a以上跟踪调查、记录15个果园的沃柑果实横径,纳入数据库,建立广西沃柑果实横径生长动态和月度增加值对照表,构建年底收获期与各生长节点横径、月度增加值与气象信息的数学模型,为指导广西沃柑生产提供科学依据。
1 材料和方法
1.1 试验地概况
2021—2022年度和2022—2023年度各调查了15个果园(选择有代表性的果园,代表好、中、差,还有桂南、桂中、桂北均有选择,因为广西沃柑主要种植在南宁周边,特别是武鸣是最大的县区),绝大部分为连续2 a调查,只有少部分变动(变动是为了方便果园的经营管理)。具体调查果园大致情况见表1。
1.2 试验材料
柑橘品种均为沃柑,砧木主要为资阳香橙和枳(除GY2109、GY2115、GY2215为枳砧外,其余均为资阳香橙砧,根据近年观察,对果实横径影响最大的是树体健康程度,如是否携带有黄龙病、衰退病、黄脉病;然后是土壤情况,如有机质、有益菌含量,土层是否疏松透气,以及水肥管理、叶果比、砧木等),均处在丰产挂果期,种植密度在55~83株·666.7 m-2(非密闭树形),常规化管理。
1.3 试验方法以及指标测定
采用“定园、定点、定果、定期”的“四定”方法测量并记录沃柑横径数据。每个果园选取有代表性的5株沃柑树,每株选择3个均匀有代表性的果实,挂牌标记,于6月稳果后每月1日、15日进行定期测量橫径并记录。到广西南宁市武鸣区等相关气象部门查阅气象相关数据。
1.4 数据分析
采用Excel 2020对数据进行整理分析。利用统计软件DPS18.10高级版的Duncans 新复极差法进行数据差异性测验,通过多元分析进行相关性分析,通过逐步回归建立数学模型。
2 结果与分析
2.1 广西2021—2022年度15个果园的沃柑果实横径生长动态
在2021—2022年度15个果园的225个沃柑横径数据中,1月15日横径d≥80 mm的有10个,占比4.44%,最大82.44 mm,最小80.23 mm;75 mm≤d<80 mm的有32个,占比14.22%;70 mm≤d<75 mm的有73个,占比32.44%;65 mm≤d<70 mm的有55个,占比24.00%;60 mm≤d<65 mm的有28个,占比12.44%;55 mm≤d<60 mm的有10个,占比4.44%;d<55 mm的有6个,占比2.67%,最小47.51 mm。
将15个果园定期测量结果平均值汇总于表2,可以看出,15个果园收获期2022年1月15日的果实横径平均值为69.85 mm,平均横径70 mm以上的有8个果园,刚好过半。果实横径最大的是南宁市武鸣区团结农场GY2108,平均横径达75.33 mm,极显著高于6个果园,显著高于9个果园;排第二位的是南宁市武鸣区双桥镇大皇后村GY2102,平均值达74.71 mm,极显著高于4个果园,显著高于9个果园大。调查发现,上述两个果园的树整体健康,做好病虫害防控,重施有机肥(每年每株施用腐熟有机肥30 kg以上)和微生物菌肥,水肥管理到位,合理修剪和疏果。最小的GY2111只有61.55 mm,极显著低于13个果园,该果园发生有一定比例的黄龙病,较高比例的衰退病和黄脉病,并且有积水沤根情况。
翌年1月15日果实大部分进入收获期后,继续对南宁市武鸣区东盟技术开发区的GY2101进行测量记录,2月1日、2月15日、3月1日的横径分别是70.13、70.45、70.75 mm,3月1日比1月15日的69.49 mm增加1.26 mm,增幅1.81%,可见进入1月份以后沃柑果径还能继续膨大,但是膨大幅度较小。
2.2 广西2022—2023年度15个果园的沃柑果实横径生长动态
将2022—2023年度的测量结果汇总于表3,可见2023年1月15日的果实横径平均值为67.09 mm。平均横径达到70 mm以上的仅有4个果园,平均横径未达70 mm的占比73.33%。来宾市兴宾区红河农场GY2114平均横径最大,达78.56 mm,极显著比11个果园大,显著比12个果园大;排第二位的是南宁市武鸣区双桥镇大皇后村GY2102,平均横径达76.79 mm,极显著大于11个果园;两个果园均为2021年调查的果园,并在按照2.1筛选出合理水肥的基础上,加强有机肥使用,配合水、有益微生物、矿质营养和一定的膨大型植物生长调节剂补充使用,合理修剪和疏果,因而果个较大。南宁市西乡塘区果园GY2211成熟期果实横径最小,只有53.74 mm,均比其他14个果园小,这主要是该果园受到黄龙病、衰退病、黄脉病等危害导致果实明显变小。通过连续2 a观测15个果园的沃柑横径数据,发现广西多个果园沃柑横径有待进一步提升。
2.3 结合气象信息选定正常年份沃柑横径数据
查阅南宁市武鸣区(表4)、南宁市、来宾市、桂林山等地的近年气象数据,发现南宁市武鸣区的2021年度前3个月的平均降雨量28.20 mm,平均温度17.20 ℃,属于正常天气,而2022年前3个月平均降雨量120.30 mm,平均温度14.57 ℃,气候较为反常,沃柑生长发育整体不如2021年,主要原因是早春低温、多雨、寡日照导致整体开花比正常年份晚15 d左右,在6月1日,比上年同期平均横径小5.66 mm,多数果园在6、7月份的果径数据比2021年小约5 mm。极端天气影响了沃柑果实的正常发育、膨大。而后,随着时间推移,由于基因控制和雨水、热量、营养的補充,果实横径生长逐渐跟上,但是2022年的平均果实横径(67.09 mm)还是整体比2021年(69.85 mm)小,所以2022—2023年度的果商收果大多定在60 mm以上,而非过去的65 mm起步。因而,选择2021—2022年度的沃柑果实横径数据作为正常年份参考是比较科学合理的。
2.4 构建基于果实横径的沃柑数字化动态生长对照表
果商在田间地头收果一般分为几个档依次定价:果实横径≥70 mm;果实横径≥65 mm;果实横径≥60 mm;果实横径<60 mm。因此,综合分析来看,在沃柑果实收获期平均果实横径达80 mm时生长状态可评价为极优,在75 mm可评价为特优,70 mm为优良(或标准),65 mm为良好,60 mm为一般,55 mm及以下为较差。
从南宁市2021—2022年度的数据中选择5个果径分别比较接近80、75、70、65、60、55 mm的数据取平均值,构建桂南沃柑果实横径动态生长对照表,如表5所示。利用差值建立桂南沃柑果实膨大期横径月度增加值对照表,如表6所示。利用上述两个表可指导沃柑的智慧灌溉,从而种植出大部分横径在70~80 mm的优质沃柑果(图1)。
从桂林、来宾的果园两个年度的数据中选择5个果实横径分别比较接近80、75、70、65、60、55 mm的数据取平均值,构建桂北和桂中沃柑果实横径生长动态对照表(表7)。同样建立桂北和桂中沃柑果实膨大期横径月度增加值对照表(表8)。可见,在桂南地区由于前期气温高,开花早,生长发育快,至6、7月份横径相对较大;而桂北和桂中地区由于前期气温低,开花较慢,前半程横径较小,但是基因控制和雨水、积温、营养等补足后果径也逐渐增大。
2.5 构建年底与各生长节点沃柑果实横径的数学模型
利用统计软件DPS18.10高级版,通过多元分析,线性回归方程,得到基于15个果园年底(农历年)与各生长节点沃柑果实横径的相关系数表(基于2021—2022年度数据,见表9)。可见,年底与各生长点沃柑横径相关系数3月1日、3月15日分别只有0.315 7和0.345 3,到了7月15日,相关系数达到显著的0.525 6,而到9月15日则达到了极显著的0.676 8,进入11月,相关系数在极显著的0.934 0以上。说明在6月份预判最终果实大小准确度较低,而到了9月、10月份以后准确度就很高。
随后建立数学模型,通过不断引入自变量,调整相关系数到最大,使得回归模型达到“最优”,最后得到基于15个果园年底(农历年)与各生长节点沃柑果实横径的数学模型:
y=70.564 3+2.857 5 x1-4.899 3 x2+0.689 3 x3+0.989 7 x4+1.401 6 x5+0.117 15 x6-0.047 5 x7-2.394 4 x8+0.098 3 x10-0.856 4 x11+10.397 9 x12-5.193 3 x13-3.112 8 x14。
y为年底(农历年),新历年翌年1月15日沃柑横径(mm)数据,x1为6月1日、x2为6月15日、x3为7月1日、x4为7月15日、x5为8月1日、x6为8月15日、x7为9月1日、x8为9月15日、x10为10月15日、x11为11月1日、x12为11月15日、x14为12月15日的沃柑横径(mm)数据。模型的复相关系数R=0.999 991,决定系数R2=0.999 98,剩余标准差SSE=0.003 8,总变异186.78,F值4431.45,p值0.011 8。
2.6 构建沃柑月度果实横径增长差值与主要气象信息的数学模型
同理,利用统计软件DPS18.10高级版,通过多元分析→线性回归方程,得到基于15个果园的沃柑月度果实横径增长差值与主要气象信息的相关系数表(基于2021—2022年度数据,见表10)。可见横径增长差值与降雨量、平均温度的相关系数达显著的0.791 8和极显著的0.879 1,而与日照时数只有0.286 6。说明沃柑果实膨大与降雨量、温度存在较大关联,雨水多、温度高有利于果实膨大,但这两者不是唯二因素,还有其他条件也在影响其膨大发育。也说明加强水肥药管理有助于沃柑膨大,从而提质增产。
同样的建立数学模型,通过不断引入自变量,调整相关系数到最大,使得回归模型达到“最优”,最后得到基于15个果园的沃柑月度果实横径增长差值与主要气象信息数学模型:
y=-1.654 1+0.008 342 x1+0.300 6 x2-0.009 184 x3。
y为月度横径(mm)增加值,x1为降雨量(mm),x2平均温度(℃),x3为日照时数(h)。模型的复相关系数R=0.919 5,决定系数R2=0.845 4,剩余标准差SSE=0.182 7,总变异31.753 5,F值5.469 1,p值0.098 3。
3 讨 论
贵州澳洲坚果[5]、江西猕猴桃[6]、广西四季蜜龙眼[7]、甘肃红地球葡萄[8]、新疆杂交榛[9]、福建卡拉卡拉红肉脐橙[10]等省份果树的果实发育或生长动态数学模型相继建立,对相应树种的生产实践具有一定指导意义。
在沃柑栽培中,影响果实横径大小的因素是多种多样的,前人研究表明,不同柑橘砧木[1,3,11]、叶果比[12]、带病苗木[2]、多效唑、氟节胺等控梢型植物生长调节剂[13]都会对沃柑果实大小的品质性状产生影响。
在2021—2022年调查的15个沃柑果园中,排在前两名的GY2108、GY2102,果树整体健康,做好病虫害防控,重施有机肥和微生物菌肥,水肥管理到位,合理修剪和疏果,所以在12月上中旬就可以卖果;而排名最后的GY2111有一定比例的黄龙病,较高比例的衰退病和黄脉病。2022—2023年调查的GY2214在笔者课题组指导下,选择了正确的水肥方案(重施有机肥,主要为微生物肥、调节剂与矿质营养联用),合理留果,所以果徑比上年大许多。另外,之所以把桂南、桂北和桂中分别建表,主要是考虑到气候差异性,桂南地区春季回暖快,开花早,前期果膨大得快,卖得早;而桂中、桂北,回暖慢,花期晚,卖果相对较晚。
笔者课题组近几年研究发现,主要有以下几个因子显著影响了沃柑横径大小:一是树体的健康程度,树体不携带黄龙病、衰退病、黄脉病、碎叶病、退绿萎缩病的果实个头大、着色好、品质高[1];二是建园前对土壤深耕深松,耕作层深厚、保水透气性能好,有利于早生快发,更容易优质高产;三是根际具有丰富的抗病益生菌,如食窦魏斯氏菌(Weissella cibaria)、产氮假单胞菌(Pseudomonas azotoformans)、戊糖片球菌(Pediococcus pentosaceus)等,可以减轻沃柑僵果发生和促进果实正常膨大、着色,原理可能是利用有益微生物拮抗有害微生物[4];四是利用水、有益微生物(EM菌、枯草芽孢杆菌、解淀粉芽孢杆菌、胶冻样芽孢杆菌等)、植物生长调节剂(胺鲜酯、复硝酚钠、芸薹素内酯)、矿质营养(一般旺树用高钾型、中庸树用平衡型、弱势用高氮型,微量元素可结合测叶配方,缺什么补什么)联合灌根,可加速果实膨大。
因此,今后应加强苗木接穗脱毒和无病苗木繁育,注意和谨慎应用氨苄青霉素等清除树体内病菌[14],加强研究和寻找高效防治衰退病、黄脉病的药物(要注意药物的安全性和残留)或微生物,结合本研究的对照表科学安排灌溉水肥甚至用药(可根据当期数值和定期差值大小来检验)能有效提升沃柑果径、产量及经济效益,推动产业繁荣发展。
4 结 论
通过连续2 a调查广西15个沃柑果园的基础数据,发现各个果园之间的最终横径差别很大,广西沃柑提质增产存在较大空间;建立了桂南、桂北和桂中的沃柑果实横径生长动态对照表、沃柑果实膨大期横径月度增加值对照表,有利于果园管理者根据当期横径大小和定期差值大小来决定何时灌溉,使用什么水肥,结合用药,从而提升果径、品质、产量乃至经济效益,能够用于指导沃柑实际生产。
参考文献 References:
[1] 黄其椿,陈东奎. 广西沃柑生产技术与经营[M]. 南宁:广西科学技术出版社,2019:1-9.
HUANG Qichun,CHEN Dongkui. Guangxi Orah production technology and management[M]. Nanning:Guangxi Science and Technology Press,2019:1-9.
[2] 黄其椿,李果果,陈东奎,刘吉敏,陈香玲,王茜,刘要鑫,胡承孝. 广西沃柑产业发展现状与对策建议[J]. 中国南方果树,2020,49(5):135-141.
HUANG Qichun,LI Guoguo,CHEN Dongkui,LIU Jimin,CHEN Xiangling,WANG Xi,LIU Yaoxin,HU Chengxiao. Current status and development strategies of orah industry in Guangxi[J]. South China Fruits,2020,49(5):135-141.
[3] 刘要鑫,仇惠君,欧智涛,陈香玲,高兴,陈东奎,李果果,赵洪涛,黄宏明,李善彪. 枳橙砧沃柑在桂南地区的综合表现[J]. 南方农业学报,2023,54(1):209-216.
LIU Yaoxin,QIU Huijun,OU Zhitao,CHEN Xiangling,GAO Xing,CHEN Dongkui,LI Guoguo,ZHAO Hongtao,HUANG Hongming,LI Shanbiao. Comprehensive performance of Orah grafted on Carrizo Citrange rootstock in southern area of Guangxi[J]. Journal of Southern Agriculture,2023,54(1):209-216.
[4] HUANG Q C,WANG N N,LIU J M,LIAO H H,ZENG Z K,HU C X,WEI C Z,TAN S Y,LIU F P,LI G G,HUANG H M,CHEN D K,WEI S L,QIN Z L. Soil bacterial communities associated with marbled fruit in Citrus reticulata Blanco ‘Orah[J]. Frontiers in Plant Science,2023,14:1098042.
[5] 韩树全,罗立娜,卢加举,贺尔奇,卢振亚. 贵州澳洲坚果果实发育动态及模型建立[J]. 种子,2023,42(4):79-85.
HAN Shuquan,LUO Lina,LU Jiaju,HE Erqi,LU Zhenya. Fruit development dynamics and model establishment of four Macadamia ssp. varieties in Guizhou[J]. Seed,2023,42(4):79-85.
[6] 钟文奇,伍梦婷,陈双双,贾慧敏,陶俊杰,黄春辉. “奉黄1号”猕猴桃果实生长发育动态分析[J]. 中国南方果树,2023,52(4):108-113.
ZHONG Wenqi,WU Mengting,CHEN Shuangshuang,JIA Huimin,TAO Junjie,HUANG Chunhui. Dynamic analysis of fruit growth and development of ‘Feng Huang No. 1 kiwifruit[J]. South China Fruits,2023,52(4):108-113.
[7] 邱宏业,朱建华,刘冰浩,潘介春,朱松生,秦献泉,徐宁,李鸿莉,彭宏祥. 四季蜜龙眼果实生长发育动态及其数学模型研究[J]. 南方农业学报,2016,47(6):960-964.
QIU Hongye,ZHU Jianhua,LIU Binghao,PAN Jiechun,ZHU Songsheng,QIN Xianquan,XU Ning,LI Hongli,PENG Hong-
xiang. Fruit growth and development of Sijimi Longan and its mathematical model[J]. Journal of Southern Agriculture,2016,47(6):960-964.
[8] 陈天雨,高晓阳,吴翔,武季玲,颜仁喆,李红岭. 红地球葡萄枝条生长动态模拟模型研究[J]. 浙江农业学报,2017,29(7):1208-1215.
CHEN Tianyu,GAO Xiaoyang,WU Xiang,WU Jiling,YAN Renzhe,LI Hongling. Dynamic simulation model for branch growth of Red Globe grape[J]. Acta Agriculturae Zhejiangensis,2017,29(7):1208-1215.
[9] 韩强,董玉芝,宋锋惠,史彦江,韩俊威,哈地尔·依沙克. 新疆杂交榛果实生长发育动态及模型研究[J]. 果树学报,2014,31(2):258-264.
HAN Qiang,DONG Yuzhi,SONG Fenghui,SHI Yanjiang,HAN Junwei,Hadier·Yishake. Study on the model and the growth and development dynamics of the major hybrid hazel of Xinjiang[J]. Journal of Fruit Science,2014,31(2):258-264.
[10] 温寿星,张艳芳,黄镜浩,陈瑾,包榕,蔡子坚. 卡拉卡拉红肉脐橙生长发育动态数学模型的建立[J]. 东南园艺,2014,2(5):10-15.
WEN Shouxing,ZHANG Yanfang,HUANG Jinghao,CHEN Jin,BAO Rong,CAI Zijian. Mathematical simulation in the growth development of Cara Cara red navel orange[J]. Southeast Horticulture,2014,2(5):10-15.
[11] 刘要鑫,陈东奎,李果果,仇惠君,欧智涛,陈香玲,黄其椿,赵洪涛. 不同砧木对沃柑树体及果实品质的影响[J]. 南方农业学报,2019,50(2):338-343.
LIU Yaoxin,CHEN Dongkui,LI Guoguo,QIU Huijun,OU Zhitao,CHEN Xiangling,HUANG Qichun,ZHAO Hongtao. Effect of different rootstocks on Orahs tree body and fruit quality[J]. Journal of Southern Agriculture,2019,50(2):338-343.
[12] 张社南,贺申魁,梅正敏,刘冰浩,区善汉,闫勇,唐燕玲. 沃柑的叶果比及其对产量与果实品质的影响[J]. 南方园艺,2020,31(6):17-21.
ZHANG Shenan,HE Shenkui,MEI Zhengmin,LIU Binghao,OU Shanhan,YAN Yong,TANG Yanling. Leaf-fruit ratio of Orah and its influence on yield and fruit quality[J]. Southern Horticulture,2020,31(6):17-21.
[13] 張戈壁,张素英. 多效唑、氟节胺控梢对沃柑果实大小的影响[J]. 南方园艺,2021,32(4):28-30.
ZHANG Gebi,ZHANG Suying. Effects of paclobutrazol and flufen on the fruit size of Orah[J]. Southern Horticulture,2021,32(4):28-30.
[14] 张木清,杨川毓,姚伟. 柑橘黄龙病防控的基础及应用[M]. 北京:科学出版社,2022:129-137
Zhang Muqing,Yang Chuanyu,Yao Wei. Basis and application of citrus Huanglongbing control[M]. Beijing:Science Press,2022:129-137.