李想 石广丽 耿佳麒 郭建辉 刘雨萌 孙丹 王振兴 张苏苏 唐倩 艾军
收稿日期:2023-09-15 接受日期:2023-11-10
基金项目:吉林省科技发展计划项目(20210202086NC)
作者简介:李想,男,在读硕士研究生,研究方向为果树栽培生理。E-mail:lx18043696103@163.com
*通信作者 Author for correspondence. E-mail:aijun1005@163.com
DOI:10.13925/j.cnki.gsxb.20230365
摘 要:【目的】探究温室栽培条件对软枣猕猴桃叶片光合特性及果实品质的影响,为软枣猕猴桃温室栽培提供理论依据。【方法】2021—2022年,以4年生软枣猕猴桃品种佳绿、魁绿为试材,在温室和露地两种栽培环境下,比较两种环境对两个品种叶片的形态建成、光合特性及果实品质的影响。【结果】温室栽培的软枣猕猴桃两品种的净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)等指标显著低于露地条件。通过对快速叶绿素荧光诱导动力学曲线进行分析,温室栽培条件下k、j、i点的相对可变荧光值显著上升,其叶片结构具有阴生植物特性。温室环境下对魁绿的单果质量与果形指数影响较大,对佳绿影响较小。温室栽培中两品种可滴定酸含量显著上升,可溶性固形物含量、可溶性糖含量与维生素C含量无显著变化。【结论】在温室栽培条件下,两个软枣猕猴桃品种对环境的适应性较为一致,首先体现为叶片形态建成趋向阴生叶,其次PSⅡ反应中心供体侧及受体侧活性较露地栽培降低,导致温室内叶片利用强光和低浓度CO2的能力低于露地,最终果实外在品质及单果质量呈现一定程度的下降趋势,但内在品质无显著影响。
关键词:软枣猕猴桃;温室栽培;光合特性;叶绿素荧光参数
中图分类号:S663.4 文献标志码:A 文章编号:1009-9980(2024)01-0089-12
Effects of greenhouse cultivation on the photosynthetic characteristics and fruit quality of Actinidia arguta
LI Xiang, SHI Guangli, GENG Jiaqi, GUO Jianhui, LIU Yumeng, SUN Dan, WANG Zhenxing, ZHANG Susu, TANG Qian, AI Jun*
(Horticulture College of Jilin Agricultural University, Changchun 130118, Jilin, China)
Abstract: 【Objective】The market supply window of fresh Actinidia arguta fruit is short due to the short storage life, and the leaves and branches are easily affected by natural disasters such as frost damage under open field cultivation conditions, which may lead to a decline in leaf damage, fruit yield, and poor fruit appearance quality. Therefore, attention should be paid on these problems in the cultivation of A. arguta. Greenhouse cultivation is a common method of promoting early cultivation, which has been widely used in the world. In this paper, two A. arguta varieties were cultivated in greenhouse, the effects of greenhouse cultivation on plant growth, photosynthetic characteristics and fruit quality of A. arguta were analyzed. 【Methods】 In this experiment, the four-year-old A. arguta varieties Jialü and Kuilü were placed in the solar greenhouse of the facility culture of Jilin Agricultural University, and the control was plants grown in the germplasm resource nursery of A. arguta of the University. Photosynthesis indexes and chlorophyll fluorescence indexes of leaves were measured, and the differences in leaf structure, leaf stomata and fruit quality were observed. 【Results】 The light response curves of the two varieties in greenhouse cultivation were significantly lower than those in open field cultivation. Except for Ci, the three photosynthetic indexes, Pn, Gs and Tr, were significantly lower than those in the open field cultivation. The order of Pn in each cultivation environment was Jialü open field cultivation>Kuilü open field cultivation>Jialü greenhouse cultivation>Kuilü greenhouse cultivation. Under greenhouse cultivation conditions, Jialü Pnmax decreased by 28.16% and Kuilü decreased by 24.28% compared with open field. In particular, the LCP of Jialü in greenhouse was 15.13% higher than that in open field, while Kuilü was the opposite. The Rd value of Jialü under greenhouse cultivation increased by 4.64% compared with that under open field, and Kuilü decreased by 12.47%. The apparent quantum efficiency (AQY) of Jialü in greenhouse decreased by 5.32%, and that of Kuilü increased by 24.7%. After linear regression analysis of CO2 response, the CE values of the two varieties decreased significantly in greenhouse cultivation, and the ability to use low concentration of CO2 was low, the performance of Jialü and Kuilü in greenhouse is relatively consistent. The analysis of chlorophyll fluorescence induction kinetics curve showed that the relative variable fluorescence of Vj point and Vi point increased significantly, and the values of Vk, Vj and Vi increased significantly in greenhouse cultivation compared with open field cultivation. The analysis of PSⅡ reaction center showed that there was no change in ETo/RC under greenhouse cultivation, but the ABS/RC and TRo/RC values of the two varieties cultivated in greenhouse were significantly higher than those in open field. Although the light energy absorbed and captured increased, the light energy finally used for electron transfer was the same as that in open field cultivation, most of which was used for heat dissipation and other ways to make energy loss, which showed that DIo/CSm was significantly higher than that in open field cultivation. The observation of leaf structure showed that the leaf thickness of A. arguta cultivated in greenhouse decreased significantly, which was in line with the characteristics of plants in greenhouse. The thickness of palisade tissue was smaller than that of open field cultivation, while the thickness of spongy tissue was greater than that of open field cultivation. The significant decrease in palisade/spongy ratio was the root cause of the decrease in photosynthetic capacity mentioned above. The thickness of upper and lower epidermis was smaller than that of open field cultivation, which made leaves vulnerable to external environment damage with adaptability to adversity. The stomatal density of A. arguta leaves cultivated in greenhouse was significantly lower than that in open field. Stomatal opening ratio, stomatal length and stomatal area were lower than those in open field cultivation, which led to the decrease in leaf gas exchange efficiency in greenhouse. This was the secondary reason for the decrease in CE value and Pn value. The fruit quality results show that the fruit size and weight in the greenhouse were lower than those in the open field. The transverse and longitudinal diameters of Jialü fruit under greenhouse cultivation were 4.29% and 8.79% lower than those in the open field, respectively. The longitudinal diameter, lateral diameter and single fruit weight of Kuilü were 8.36%, 2.41% and 14.07% lower than those of the open field, respectively. Although the fruit size decreased, there was no significant difference in contents of soluble solids, soluble sugars and vitamin C but a significant increase in titratable acid content. Greenhouse cultivation advanced the maturity of the fruit by 70 days, advanced the sales time of A. arguta market, extended the supply period of fresh fruit market, and brought considerable economic benefits. 【Conclusion】 Under greenhouse cultivation conditions, the adaptability of the two A. arguta varieties to the environment was relatively consistent. Firstly, the leaf morphogenesis tended to shade leaves. Secondly, the activity of the donor side and the receptor side of the PSⅡ reaction center was lower than that of the open field cultivation, resulting in weaker ability of the leaves in the greenhouse to use strong light and low concentration of CO2 than that of the open field. Finally, the external quality of the fruit decreased to a certain extent, but the internal quality had no significant change.
Key words: Actinidia arguta; Greenhouse cultivation; Photosynthetic characteristics; Chlorophyll fluorescence parameters
软枣猕猴桃[Actinidia arguta (Sieb. et Zucc.) Planch. ex Miq],为猕猴桃科(Actinidiaceae)猕猴桃属(Actinidia)大型落叶木质藤本植物[1]。果实表皮光滑无毛,品质风味独特[2]。其果实营养丰富,可鲜食,亦可加工成果酱、果酒等,同时具有抗氧化、降血糖和通便润肠等功效[3]。虽然中国软枣猕猴桃人工栽培发展较晚[4],但软枣猕猴桃是很有开发利用前景的野生浆果类果树[5],中国软枣猕猴桃人工栽培以露地为主,温室栽培起步相对较晚[6]。温室栽培作为保护地栽培的一种,可以较好地控制病虫害的发生及传播,避免因雨水不均导致涝害或果实糖度降低。研究表明,近年来,温室栽培适用于多种果树[7-9],猕猴桃属植物研究较晚,但设施栽培对猕猴桃的意义重大,可以有效控制猕猴桃溃疡病的发病率[10]。温室栽培需提前打破休眠,对果树本身需冷量有一定要求,由于软枣猕猴桃自身的需冷量要求不高,大部分品种在1000 h以内,其中魁绿与佳绿只需840 h、672 h左右即可[11],较低的需冷量可使软枣猕猴桃在温室栽培时提前升温不影响其结果性能,故进行温室栽培具有一定的可行性。在温室栽培条件下,整体物候期会提前2~3个月,在吉林长春地区约在当年6月份果实成熟,较露天栽培提早上市3个月左右,能够填补软枣猕猴桃鲜果市场的空窗期,提高经济效益。
目前软枣猕猴桃叶片的光合特性研究多在露地栽培条件下,温室条件下少见报道[12],因此深入研究温室栽培对软枣猕猴桃叶片光合特性及果实品质的影响,对建立科学、规范的温室栽培模式具有重要的理论指导意义。
1 材料和方法
1.1 试验地概况
试验于2021年12月至2022年9月在吉林农业大学软枣猕猴桃资源圃与设施农业基地内进行。试验采用日光温室栽培模式,传统的露地栽培为对照。日光温室跨度9.51 m,脊高4.50 m,长65.30 m。供水方式为滴灌,通过内、外遮阴帘调控温度,排风扇与湿帘控制温、湿度。种植土壤均为园土、沙子、草炭土体积比为3∶1∶1配置而成。长春地区年平均日照时数2259~3016 h,年平均降水量568.5 mm,无霜期140~150 d,霜期156 d[13]。长春地区2020年每月气温详见表1。
1.2 试验材料
供试软枣猕猴桃品种为4年生佳绿和魁绿,以雄株品种绿王为授粉树。温室及露地栽培均为单龙干整形。温室栽培于2021年12月20日进行升温处理(揭被升温),露地栽培随气候变化自然进行,试验期间两种栽培模式的整形修剪、肥水管理与病虫害管理等措施保持一致。
1.3 试验方法
试验共设两种栽培环境,标记结果枝基部第一花序前第3枚叶片,于盛花期(温室为4月1日,露地为6月5日)分别在两种栽培环境下进行光合指标及快速叶绿素荧光的测定,每个品种设20个重复;选取功能叶片,通过石蜡切片法观察叶片结构[14];监测温室内两个品种果实的可溶性固形物含量(TSS),当其达到7%时进行采收,测量果形指数及单果质量,每个品种设30个重复;待果实充分后熟后进行可溶性固形物含量、可溶性糖含量、可滴定酸含量以及维生素C含量的测定,每个品种设3次重复。露地栽培佳绿、温室栽培佳绿、露地栽培魁绿以及温室栽培魁绿分别用J1、J2、K1、K2代表。
1.3.1 光响应曲线的测定 光响应曲线测定参考王振兴等[15]的方法。于晴天上午使用CIRAS-3便携式光合测定系统(PP-SYSTEM,美国)对选取的植株叶片进行测定。分别以净光合速率(Pn)、胞间二氧化碳浓度(Ci)、气孔导度(Gs)、蒸腾速率(Tr)为纵轴,绘制响应曲线。利用双曲线修正模型进行计算,得出光合作用的最大净光合速率(Pnmax)、光饱和点(LSP)、光补偿点(LCP)、暗呼吸速率(Rd)以及表观量子效率(AQY)。
1.3.2 二氧化碳响应曲线的测定 CO2响应参考王振兴等[15]的方法测定,光合有效辐射(PAR)设1400 μmol·m-2·s-1,CO2浓度设为0、100、150、200 μmol·mol-1。Pn-CO2曲线初始斜率即为羧化效率(CE)。
1.3.3 快速叶绿素荧光诱导动力学曲线的测定 该试验参考郭建辉等[16]的方法,将叶片在黑暗条件下处理1 h,使用Pocket-PEA非调制式荧光仪(Hansatech,英国)测定软枣猕猴桃叶片快速叶绿素荧光诱导动力学曲线(O-J-I-P曲线),参考Strasser等[17]的方法进行分析,并根据公式(Ft-Fo)/(Fm-Fo)进行标准化处理,每个品种均测20枚叶片。
1.3.4 叶片结构及气孔的观察 在盛花期(温室为4月1日,露地为6月5日)选取叶幕上层照光均匀一致的功能叶片进行石蜡切片的制作以及观察气孔形态,石蜡切片制作参考王振兴等[18]的方法,气孔形态观察参考徐清华[19]的方法。
1.3.5 果形指数的测定 在果实采收后,使用游标卡尺对软枣猕猴桃果实的纵径、横径、侧径进行测量,由于软枣猕猴桃为二歧聚伞花序,同一花序上着生3个果实的选择位于中间的果实进行测量,以此保证数据的一致性。
1.3.6 果实品质的测定 在果实成熟期,每份资源采收30个典型果实,放入4 ℃冰箱中进行果实后熟,待7 d后果实完全成熟时进行果实品质的测定。TSS含量采用电子糖量仪(PAL-101,杭州齐威仪器有限公司,中国)测定;果实的可溶性糖含量采用试剂盒法进行检测(BC0030,Solarbio,中国);可滴定酸含量参考张治安等[20]的方法采用酸碱滴定法测定;维生素C含量参考师恺丰[21]的方法采取钼蓝比色法测定。
1.4 数据分析
利用SPSS 20统计软件进行方差分析,使用Microsoft Office 2021进行数据处理与作图。
2 结果与分析
2.1 软枣猕猴桃温室栽培对叶片光响应的影响
由图1-A可知,不同条件下各品种的Pn与PAR均呈正相关,在露地栽培条件下品种的Pn值显著高于温室栽培。PAR在200~1600 μmol·m-2·s-1内露地栽培条件的Pn值与温室栽培间的差异逐渐增大,各栽培环境下的Pn排序为:佳绿露地栽培>魁绿露地栽培>佳绿温室栽培>魁绿温室栽培。温室栽培条件下佳绿Pnmax下降28.16%、魁绿Pnmax下降24.28%;如图1-B所示,温室与露地条件下各处理Ci无显著差异;从图1-C可以看出,露地栽培软枣猕猴桃Gs随PAR的增加呈波动性变化,温室内趋于平缓;在温室栽培条件下的两个品种,其Gs的光响应曲线与Tr的光响应曲线变化趋于一致,Gs是影响Tr变化的主要因子之一(图1-C、D)。
不同栽培条件下的软枣猕猴桃品种光响应特征参数存在差异(表2),温室栽培条件下两个品种Pnmax、LSP显著低于露地栽培,温室栽培佳绿LCP高于露地15.13%,而魁绿则表现相反;温室栽培下的佳绿Rd值与露地相比上升4.64%,魁绿下降12.47%;温室中佳绿的AQY相对下降5.32%,魁绿上升24.7%。
2.2 软枣猕猴桃温室栽培对叶片CO2响应的影响
将CO2浓度<200 μmol·mol-1的Pn值进行线性回归后计算CE值,如图2-A、B所示,两个品种在不同栽培环境下CE值具显著性差异,但在相同栽培环境下两个品种之间并无显著性差异,回归曲线趋于一致。在温室栽培中两个品种CE值显著下降,表明在温室环境下两个软枣猕猴桃品种利用低浓度CO2的能力降低,并且温室内部CO2浓度与露地相比较低,是Pnmax低于露地栽培的原因之一。
2.3 软枣猕猴桃温室栽培对叶片叶绿素荧光特性的影响
如图3和图4所示,温室栽培增加了软枣猕猴桃两个品种叶片叶绿素荧光诱导动力学曲线中j点和i点的相对可变荧光,其Vk、Vj、Vi值与露地相比显著升高。以上结果表明,在温室环境下软枣猕猴桃叶片的放氧复合体及电子传递链的活性发生了一定的变化,但对叶绿素荧光诱导动力学曲线进行分析,温室栽培仍与露地栽培趋于一致。
如图5所示,对于单位活性的PSⅡ反应中心而言,不同栽培环境对软枣猕猴桃叶片的ETo/RC无影响,但温室栽培两个品种的ABS/RC、TRo/RC值显著高于露地;温室栽培使两个品种反应中心吸收、耗散、捕获的光能增加,但用于电子传递的能量无显著变化。在温室内两个品种的DIo/CSm均显著升高,说明温室内的高温使软枣猕猴桃叶片单位面积的热耗散增加。
2.4 栽培环境对软枣猕猴桃叶片结构的影响
如图6所示,通过对不同环境下的叶片结构进行观察,两个品种在温室和露地栽培条件下均可见明显的栅栏组织与海绵组织,上下表皮为不规则单层细胞,栅栏组织多为长柱状,海绵组织多为不规则卵圆形,结构上无较大差异。
由表3可知,两个品种在温室中叶片的叶肉组织均受影响,表现在叶片厚度、栅栏组织、海绵组织及上下表皮厚度显著低于露地,叶片变薄,呈阴生植物特性。在温室中,佳绿的栅栏组织、海绵组织较魁绿发达,同时栅海比显著高于魁绿,表明佳绿的叶片较魁绿更为适应温室环境。
如图7所示,2个品种在不同的栽培环境下,表皮气孔的大小、形状及开闭状态存在差异,露地环境下气孔明显较温室下密集。由表4可知,温室条件下的2个品种的气孔密度、气孔开张比、气孔开度、气孔面积、气孔长、气孔宽及气孔指数均呈显著低于露地栽培。
2.5 软枣猕猴桃温室栽培对果实品质的影响
对两个品种的果实进行单果质量与果形指数的调查(表5),发现在温室环境下,两个品种除魁绿果实横径外,其余指标均显著低于露地。温室栽培条件下佳绿果实的横、纵径分别比露地栽培低4.29%、8.79%;魁绿的纵径、侧径、单果质量分别比露地栽培低8.36%、2.41%、14.07%。综上所述,温室栽培对果实大小及单果质量影响较大。
对果实进行生理指标的测定,结果见表6,温室栽培使两个品种成熟期提前70 d,佳绿与魁绿在温室栽培中,除可滴定酸含量显著上升外,可溶性固形物含量、可溶性糖含量以及维生素C含量均无显著性差异,温室栽培对果实内在品质的影响较小。
3 讨 论
温室栽培区别于露地栽培,其中光质差、日照时长短、高温高湿、CO2浓度低是温室环境的特点。果树在温室中栽培势必会受到环境因子的影响,首先改变叶片的形态建成,进而影响光合特性,最后导致果实品质发生变化。
不同植物对光照的需求有差异,研究表明,葡萄等其他树种对设施及弱光环境的适应性较为一致[22-25],导致叶片Pnmax与LSP显著下降,与本研究中温室栽培的软枣猕猴桃叶片对环境适应的光响应模式相同。叶片的光适应性变化与叶片形态建成密不可分,其中温室内较低的Gs与Tr直接影响着气体交换,马微[26]对温室栽培葡萄的研究也表明其叶片的光合特性与之相似。
利用叶绿素荧光动力学方法可以快速、灵敏、无损伤地研究和探测各种逆境对植物光合生理的影响[27]。植物光合电子传递链中包括两个连续作用的光系统,光系统Ⅰ与光系统Ⅱ[28]。过高的温度与较弱的光照度通常会影响植物PSⅡ供体侧与受体侧的电子传递体活性,使其受到可逆或不可逆的损伤[29],吴久赟等[30]发现高温影响了PSⅡ中心捕获电子和电子传递,这与本研究中佳绿、魁绿在温室内的表现一致。由于本研究中的温室为玻璃温室,在冬春季时,于上午8:00—9:00逐步打开顶、侧通风,维持温度在30 ℃以内,在夏季时,顶、侧通风则保持全天开放(阴雨天另作调整),温度过高时打开排风扇,但仍时有不可控因素导致30 ℃以上的温度,影响叶片,较高的Vj值证明在温室内软枣猕猴桃佳绿、魁绿叶片的PSⅡ的确受到了较高温度的影响,可能导致叶绿素类囊体膜的活性发生改变[31]。王振兴等[32]研究指出PSⅡ供体侧放氧复合体(OEC)的活性与受体侧电子传递链均易受到高温影响,明显的k点随之出现,本研究表明温室中软枣猕猴桃叶片的Vk、Vj等值显著高于露地,这与多种热处理影响OEC敏感性的研究结果一致[33-35]。随着叶龄的增加,过剩光能和活性氧的不断积累可能会导致叶片出现日灼、早衰等现象[36-37]。
叶片的形态建成主要影响因素之一是光照,而形态建成后又会影响光合作用,所以叶片的形态建成对适应环境有重要作用[38]。由于温室中光照较差、温度和湿度较高等,两个品种叶片结构均为叶片大而薄、栅栏组织不发达,并且栅海比较低,气孔数较少,呈现出阴生叶的性质[39],且上下表皮细胞变薄,对逆境的适应性较差,符合温室中的植物特点。Chen等[40]研究指出,补光的马铃薯叶片的厚度显著高于对照,光照对叶片的形态建成具有决定作用。故有必要定期对温室表面玻璃进行清洗,以保证光照充足。此外,应根据物候期变化,通过排风或灌水方式调控湿度。适度补光可以促进植物生长[41-43],在光形态建成时期,夜间对软枣猕猴桃采用补光灯补光可以有效缓解短日照时长的影响。
由于温室栽培的软枣猕猴桃叶片光合能力低于露地,积累的同化物较少,因此果个小于露地。范盼盼[44]研究发现设施栽培的冬枣单果质量及果实纵横径显著低于露地栽培,与本研究结果一致。但陈海豹等[45]对杨梅的研究结果相反,产生这种差异的原因可能是不同种果树对温室栽培的适应性有差异。与露地栽培相比,温室中两个品种的可溶性固形物含量、可溶性糖含量及维生素C含量与露地相比无显著差异,说明温室栽培对软枣猕猴桃的糖分及维生素C积累无明显影响,但可滴定酸含量在温室条件下显著高于露地栽培,表明软枣猕猴桃的酸含量极易受温室条件影响,最终导致糖酸比下降。一方面由于温室内日照时长短于露地,有机物的积累较少,酸的分解能力降低;另一方面温室内的昼夜温差较小,夜间呼吸作用强于露地,营养消耗加剧,导致积累的有机物进一步流失。最终使糖含量下降,酸含量上升,糖酸比下降。
温室环境下两个品种间叶片结构及光能利用范围具有差异,具有较低LCP及较高栅海比等特征的软枣猕猴桃品种更适宜进行温室栽培,佳绿与魁绿在温室环境下的表现较为一致,但佳绿具有更高的栅海比,而魁绿叶片的LCP较低,品种间的栽培特性差异应作为选择温室栽培品种的理论依据。后续计划对资源圃中其余品种进行温室栽培试验,比较需冷量、成熟期与温室栽培适应性的关系。对现有结果推测可知,大部分软枣猕猴桃品种进行温室栽培具有一定的可行性。
4 结 论
在温室栽培条件下,两个软枣猕猴桃品种对环境的适应性较为一致,首先体现为叶片形态建成趋向阴生叶,其次PSⅡ反应中心供体侧及受体侧活性较露地栽培降低,导致温室内叶片利用强光和低浓度CO2的能力低于露地,最终单果质量出现一定程度的下降,但内在品质无显著影响。
温室栽培中,不同品种对环境的适应性具有一定差异,在后续工作中,应根据品种的栽培特性,筛选适宜进行温室栽培的品种,这对建立科学、规范的软枣猕猴桃温室栽培具有重要的理论指导意义。
参考文献 References:
[1] 艾军. 中国软枣猕猴桃种质资源[M]. 北京:中国农业出版社,2023.
AI Jun. Chinese Actinidia arguta germplasm resources[M]. Beijing:China Agriculture Press,2023.
[2] 艾军. 软枣猕猴桃栽培与加工技术[M]. 北京:中国农业出版社,2014.
AI Jun. Cultivation and processing technology of Actinidia arguta[M]. Beijing:China Agriculture Press,2014.
[3] 许丽文,秦红艳,王衍莉,李嘉琪,张宝香,刘方圆. 软枣猕猴桃成分分析及润肠通便功效的研究[J]. 特产研究,2023,45(3):18-23.
XU Liwen,QIN Hongyan,WANG Yanli,LI Jiaqi,ZHANG Bao
xiang,LIU Fangyuan. Component analysis of Actinidia arguta and study on its effect of moistening intestines and defecating[J]. Special Wild Economic Animal and Plant Research,2023,45(3):18-23.
[4] 齐秀娟,郭丹丹,王然,钟云鹏,方金豹. 我国猕猴桃产业发展现状及对策建议[J]. 果树学报,2020,37(5):754-763.
QI Xiujuan,GUO Dandan,WANG Ran,ZHONG Yunpeng,FANG Jinbao. Development status and suggestions on Chinese kiwifruit industry[J]. Journal of Fruit Science,2020,37(5):754-763.
[5] 方金豹,钟彩虹. 新中国果树科学研究70年:猕猴桃[J]. 果树学报,2019,36(10):1352-1359.
FANG Jinbao,ZHONG Caihong. Fruit scientific research in New China in the past 70 years:Kiwifruit[J]. Journal of Fruit Science,2019,36(10):1352-1359.
[6] 赵凤军. 软枣猕猴桃温室栽培技术[J]. 北方果树,2020(6):24-26.
ZHAO Fengjun. Cultivation techniques of Actinidia arguta in greenhouse[J]. Northern Fruits,2020(6):24-26.
[7] 李玉婷,任利慧,王媛,周爱英,杨维,黄建. 设施栽培模式下‘冬枣光合效率限制因子研究[J]. 园艺学报,2023,50(3):647-656.
LI Yuting,REN Lihui,WANG Yuan,ZHOU Aiying,YANG Wei,HUANG Jian. Photosynthetic characteristics of Ziziphus jujuba ‘Dongzao under protected cultivation[J]. Acta Horticulturae Sinica,2023,50(3):647-656.
[8] 戚行江,梁森苗,陈海豹,俞浙萍,孙鹂,郑锡良,张淑文.促早栽培对杨梅叶片形态及果实成熟与品质的影响[J].果树学报,2023,40(11):2403-2412.
QI Xingjiang,LIANG Senmiao,CHEN Haibao,YU Zheping,SUN Li,ZHENG Xiliang,ZHANG Shuwen. Effects of forcing cultivation on the leaf morphology,fruit ripening and quality of Myrica rubra[J]. Journal of Fruit Science,2023,40(11):2403-2412.
[9] 孙晓华,叶丽红,刘杰才,李晓静,张之为,崔世茂,宋阳. 日光温室不同结果枝类型对柑橘果实有机酸含量的影响[J]. 果树学报,2018,35(5):565-573.
SUN Xiaohua,YE Lihong,LIU Jiecai,LI Xiaojing,ZHANG Zhiwei,CUI Shimao,SONG Yang. Effect of different types of fruiting shoots on organic acid content in citrus fruit grown in a solar greenhouse[J]. Journal of Fruit Science,2018,35(5):565-573.
[10] 饶菁. 避雨栽培下微环境对猕猴桃溃疡病防控和品质的影响研究[D]. 重庆:重庆三峡学院,2023.
RAO Qing. Study on the effect of microenvironment on the prevention and control of Actinidia chinensis Planch. canker and quality under rain-shelter cultivation[D]. Chongqing:Chongqing three gorges university,2023.
[11] 石广丽,艾军,秦红艳,赵滢,刘海双. 不同软枣猕猴桃资源的需冷量[J]. 北方园艺,2018(16):81-84.
SHI Guangli,AI Jun,QIN Hongyan,ZHAO Ying,LIU Haishuang. Chilling requirement of different Actinidia argute[J]. Northern Horticulture,2018(16):81-84.
[12] PINTO D,SUT S,DALL'ACQUA S,DELERUE-MATOS C,RODRIGUES F. Actinidia arguta pulp:Phytochemical composition,radical scavenging activity,and in vitro cells effects[J]. Chemistry & Biodiversity,2021,18(3):e2000925.
[13] 庄艳婷. 长春地区10种牡丹的引种栽培试验[D]. 长春:长春大学,2022.
ZHUANG Yanting. Introduction and cultivation of 10 resistant peonies in Changchun[D]. Changchun:Changchun University,2022.
[14] 艾军,王英平,李昌禹,沈育杰. 五味子花芽分化的形态学研究[J]. 特产研究,2009,31(4):22-24.
AI Jun,WANG Yingping,LI Changyu,SHEN Yujie. A study on morphogenesis of flower bud differentiation in Schisandra chinensis (Tnrcz) Baill.[J]. Special Wild Economic Animal and Plant Research,2009,31(4):22-24.
[15] 王振兴,吕海燕,秦红艳,赵滢,刘迎雪,艾军,曹建冉,杨义明,沈育杰. 盐碱胁迫对山葡萄光合特性及生长发育的影响[J]. 西北植物学报,2017,37(2):339-345.
WANG Zhenxing,L? Haiyan,QIN Hongyan,ZHAO Ying,LIU Yingxue,AI Jun,CAO Jianran,YANG Yiming,SHEN Yujie. Photosynthetic characteristics and growth development of Amur grape (Vitis amurensis Rupr.) under saline-alkali stress[J]. Acta Botanica Boreali-Occidentalia Sinica,2017,37(2):339-345.
[16] 郭建辉,王振兴,孙丹,石广丽,张苏苏,艾军,于淼,刘雨萌,吴姝逸. 不同光照强度对两份五味子资源PSⅡ活性的影响[J]. 西南农业学报,2022,35(12):2788-2793.
GUO Jianhui,WANG Zhenxing,SUN Dan,SHI Guangli,ZHANG Susu,AI Jun,YU Miao,LIU Yumeng,WU Shuyi. Effect of different light intensity on PSⅡ activity of two resources of Schisandra chinensis[J]. Southwest China Journal of Agricultural Sciences,2022,35(12):2788-2793.
[17] STRASSER R J,TSIMILLI-MICHAEL M,SRIVASTAVA A. Analysis of the chlorophyll a fluorescence transient[M]//PAPAGEORGIOU G C,GOVINDJEE. Chlorophyll a fluorescence,advances in photosynthesis and respiration. Dordrecht:Springer,2004,19:321-362.
[18] 王振兴,秦红艳,李昌禹,艾军,张庆田. 刺五加不同叶位叶片光合特性及显微结构研究[J]. 特产研究,2011,33(3):30-33.
WANG Zhenxing,QIN Hongyan,LI Changyu,AI Jun,ZHANG Qingtian. Studies on the photosynthetic characteristics and microstructure of Acanthopanax senticosus (Rupr. et Maxim.) Harms. leaves at different position[J]. Special Wild Economic Animal and Plant Research,2011,33(3):30-33.
[19] 徐清华. 两种不同类型植物叶片形态解剖学指标观测方法的研究[D]. 哈尔滨:东北农业大学,2016.
XU Qinghua. Research about observation methods of morphological and anatomical indicators in two different kinds of qlant leaves[D]. Harbin:Northeast Agricultural University,2016.
[20] 张治安,陈展宇. 植物生理学实验技术[M]. 长春:吉林大学出版社,2008.
ZHANG Zhian,CHEN Zhanyu. Experimental techniques of plant physiology[M]. Changchun:Jilin University Press,2008.
[21] 师恺丰. 软枣猕猴桃种质资源在长春地区的生物学特性评价研究[D]. 长春:吉林农业大学,2022.
SHI Kaifeng. Study of the evaluation for biological characteristics of the Actinidia arguta germplasm resources in Changchun area[D]. Changchun:Jilin Agricultural University,2022.
[22] 张银凤,蔡洪月,彭金根,刘学军,谢利娟,张华,王艳梅. 深圳城市公园不同栽植环境对毛棉杜鹃生长的影响[J]. 南京林业大学学报(自然科学版),2023,47(2):197-204.
ZHANG Yinfeng,CAI Hongyue,PENG Jingen,LIU Xuejun,XIE Lijuan,ZHANG Hua,WANG Yanmei. Effects of different planting environments on the growth of Rhododendron moulmainense in Shenzhen urban parks[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2023,47(2):197-204.
[23] 王海波,王孝娣,史祥宾,王宝亮,郑晓翠,刘凤之. 葡萄不同品种对设施环境的适应性[J]. 中国农业科学,2013,46(6):1213-1220.
WANG Haibo,WANG Xiaodi,SHI Xiangbin,WANG Baoliang,ZHENG Xiaocui,LIU Fengzhi. Environmental adaptability of different grape cultivars in greenhouse[J]. Scientia Agricultura Sinica,2013,46(6):1213-1220.
[24] 唐银,杨培蓉,吕宁宁,刘子晗,钟淑芳,黄金华,沈子宇,郑雪燕,许珊珊,曹光球,叶义全. 遮阴对杉木幼苗生长及光合特性的影响[J]. 应用与环境生物学报,2023,29(5):1084-1092.
TANG Yin,YANG Peirong,L? Ningning,LIU Zihan,ZHONG Shufang,HUANG Jinhua,SHEN Ziyu,ZHENG Xueyan,XU Shanshan,CAO Guangqiu,YE Yiquan. Effects of shading on growth and photosynthetic characteristics of Cunninghamia lanceolata seedlings[J]. Chinese Journal of Applied and Environmental Biology,2023,29(5):1084-1092.
[25] 王志强,何方,牛良,刘淑娥. 设施栽培油桃光合特性研究[J]. 园艺学报,2000,27(4):245-250.
WANG Zhiqiang,HE Fang,NIU Liang,LIU Shue. A comparative research on photosynthesis of nectarine grown inside and outside greenhouses[J]. Acta Horticulturae Sinica,2000,27(4):245-250.
[26] 马微. 吐鲁番设施与露地栽培葡萄的生长发育差异分析[D]. 乌鲁木齐:新疆农业大学,2016.
MA Wei. Analysis on difference of growth and development of grape in protected and open field cultivation in Turpan[D]. Urumqi:Xinjiang Agricultural University,2016.
[27] 陈建明,俞晓平,程家安. 叶绿素荧光动力学及其在植物抗逆生理研究中的应用[J]. 浙江农业学报,2006,18(1):51-55.
CHEN Jianming,YU Xiaoping,CHENG Jiaan. The application of chlorophyll fluorescence kinetics in the study of physiological responses of plants to environmental stresses[J]. Acta Agriculturae Zhejiangensis,2006,18(1):51-55.
[28] APPENROTH K J,ST?CKEL J,SRIVASTAVA A,STRASSER R J. Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements[J]. Environmental Pollution,2001,115(1):49-64.
[29] 王振兴,艾军,李晓红,陈丽,沈育杰. 不同胁迫对软枣猕猴桃叶片光系统活性的影响[J]. 华北农学报,2011,26(S1):69-73.
WANG Zhenxing,AI Jun,LI Xiaohong,CHEN Li,SHEN Yujie. Effects of different stress on activity of photosystems in leaves of Actinidia arguta (Seib. et Zucc.) Plangch. ex Miq.[J]. Acta Agriculturae Boreali-Sinica,2011,26(S1):69-73.
[30] 吴久赟,徐桂香,李海峰,曾晓燕,姜建福,刘勇翔,魏亦农,任红松. 高温胁迫对葡萄叶绿素荧光和光合特性参数的影响[J]. 新疆农业科学,2021,58(12):2274-2281.
WU Jiuyun,XU Guixiang,LI Haifeng,ZENG Xiaoyan,JIANG Jianfu,LIU Yongxiang,WEI Yinong,REN Hongsong. Effects of heat stress on chlorophyll fluorescence and photosynthetic characteristic parameters in grape (Vitis vinifera L. ‘Manicure finger)[J]. Xinjiang Agricultural Sciences,2021,58(12):2274-2281.
[31] 陈贻竹,李晓萍,夏丽,郭俊彦. 叶绿素荧光技术在植物环境胁迫研究中的应用[J]. 热带亚热带植物学报,1995,3(4):79-86.
CHEN Yizhu,LI Xiaoping,XIA Li,GUO Junyan. The application of chlorophyll fluorescence technique in the study of responses of plants to environmental stresses[J]. Journal of Tropical and Subtropical Botany,1995,3(4):79-86.
[32] 王振兴,艾军,陈丽,范书田,何伟,秦红艳,赵滢. 软枣猕猴桃叶片光系统Ⅱ活性对不同温度的响应[J]. 西北植物学报,2015,35(2):329-334.
WANG Zhenxing,AI Jun,CHEN Li,FAN Shutian,HE Wei,QIN Hongyan,ZHAO Ying. Activity of photosystems Ⅱ in leaves of Actinidia arguta under different temperature treatments[J]. Acta Botanica Boreali-Occidentalia Sinica,2015,35(2):329-334.
[33] ZHANG C,ZHANG W C,YAN H F,NI Y X,AKHLAQ M,ZHOU J N,XUE R. Effect of micro-spray on plant growth and chlorophyll fluorescence parameter of tomato under high temperature condition in a greenhouse[J]. Scientia Horticulturae,2022,306:111441.
[34] ZHANG L X,CHANG Q S,HOU X G,WANG J Z,CHEN S D,ZHANG Q M,WANG Z,YIN Y,LIU J K. The effect of high-temperature stress on the physiological indexes,chloroplast ultrastructure,and photosystems of two herbaceous peony cultivars[J]. Journal of Plant Growth Regulation,2023,42(3):1631-1646.
[35] SHEN J S,CHENG H F,LI X Q,PAN X D,HU Y E,JIN S H. Beneficial effect of exogenously applied calcium chloride on the anatomy and fast chlorophyll fluorescence in Rhododendron × pulchrum leaves following short-term heat stress treatment[J]. Agronomy,2022,12(12):3226.
[36] 李化龙,王景红,张维敏,柏秦凤,张焘,潘宇鹰,权文婷. 高温胁迫对猕猴桃叶片叶绿素荧光特性的影响[J]. 应用气象学报,2021,32(4):468-478.
LI Hualong,WANG Jinghong,ZHANG Weimin,BAI Qinfeng,ZHANG Tao,PAN Yuying,QUAN Wenting. Effects of high temperature stress on leaf chlorophyll fluorescence characteristics of kiwifruit[J]. Journal of Applied Meteorological Science,2021,32(4):468-478.
[37] STRASSERF R J,SRIVASTAVA A,GOVINDJEE. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria[J]. Photochemistry and Photobiology,1995,61(1):32-42.
[38] 鲁菁. 异质性光环境对不同品种大豆叶片形态结构及光合特性的影响[D]. 雅安:四川农业大学,2019.
LU Jing. Effects of heterogeneous light on morphological structure and photosynthetic characteristics of soybean leaves[D]. Yaan:Sichuan Agricultural University,2019.
[39] XIE F C,SHI Z J,ZHANG G Y,ZHANG C T,SUN X Y,YAN Y,ZHAO W,GUO Z X,ZHANG L,FAHAD S,SAUD S,CHEN Y J. Quantitative leaf anatomy and photophysiology systems of C3 and C4 turfgrasses in response to shading[J]. Scientia Horticulturae,2020,274:109674.
[40] CHEN L L,ZHANG K,GONG X C,WANG H Y,GAO Y H,WANG X Q,ZENG Z H,HU Y G. Effects of different LEDs light spectrum on the growth,leaf anatomy,and chloroplast ultrastructure of potato plantlets in vitro and minituber production after transplanting in the greenhouse[J]. Journal of Integrative Agriculture,2020,19(1):108-119.
[41] 母德锦,吴美珍,余琼芬,胡小龙. LED红光对蚕豆幼苗生长和生理生化特性的影响[J]. 中国瓜菜,2023,36(2):35-41.
MU Dejin,WU Meizhen,YU Qiongfen,HU Xiaolong. Effects of LED red light on growth,physiology and biochemistry features of Vicia faba seedlings[J]. China Cucurbits and Vegetables,2023,36(2):35-41.
[42] 刘志强,朱新红,刘勇鹏,王清,李春,张婵,姜俊. 夜间不同LED补光时段对番茄幼苗生长生理指标的影响[J]. 中国瓜菜,2022,35(8):79-85.
LIU Zhiqiang,ZHU Xinhong,LIU Yongpeng,WANG Qing,LI Chun,ZHANG Chan,JIANG Jun. LED lighting periods at night affects the growth and development of tomato seedlings[J]. China Cucurbits and Vegetables,2022,35(8):79-85.
[43] 王舒亚,徐威,唐中祺,王鹏,景涛,刘琪,马正宇,吕剑,郁继华. 不同补光时长对日光温室西葫芦生长、品质及产量的影响[J]. 中国瓜菜,2020,33(4):23-27.
WANG Shuya,XU Wei,TANG Zhongqi,WANG Peng,JING Tao,LIU Qi,MA Zhengyu,L? Jian,YU Jihua. Effects of different duration of light supplementation on growth,quality and yield of Cucurbita pepo in greenhouse[J]. China Cucurbits and Vegetables,2020,33(4):23-27.
[44] 范盼盼. 不同栽培环境及其对冬枣生长结果和效益的影响[D]. 阿拉尔:塔里木大学,2021.
FAN Panpan. Different cultivation environments and their effects on the growth,fruits and benefits of winter jujube[D]. Alar:Tarim University,2021.
[45] 陈海豹,戚行江,张淑文,俞浙萍,孙鹂,郑锡良,梁森苗. 不同促成设施栽培模式对杨梅果实品质形成的影响[J]. 浙江农业科学,2023,64(8):1885-1891.
CHEN Haibao,QI Xingjiang,ZHANG Shuwen,YU Zheping,SUN Li,ZHENG Xiliang,LIANG Senmiao. Effects of different cultivation models in facilitation facilities on fruit quality formation of bayberry[J]. Journal of Zhejiang Agricultural Sciences,2023,64(8):1885-1891.