【摘 要】免疫检查点阻断(immune checkpoint blockade,ICB)的单药治疗在胰腺导管腺癌(pancreatic ductal adenocarcinoma,PDAC)中未见成效,采取合理的联合疗法是克服PDAC ICB抵抗的有效策略。目前为克服PDAC ICB耐药的联合手段主要包括增强PDAC表面的程序性死亡受体-配体1(programmed cell death-ligand 1,PD-L1)或组织相容性复合体Ⅰ(histocompatibil⁃ity complex Ⅰ,MHC-Ⅰ);靶向免疫细胞中发挥抑制功能的关键效应因子,改善PDAC的免疫抑制微环境;联合能量消融、光动力疗法、纳米材料包裹等手段促进肿瘤相关抗原的释放,刺激免疫激活。本综述旨在对近年PDAC中发现的ICB耐药靶标和新兴手段进行梳理,为克服PDAC ICB耐药提供新思路。
【关键词】胰腺导管腺癌;免疫检查点阻断;耐药;生物标志物
【中图分类号】R453.9 【文献标志码】A 【收稿日期】2023-10-18
胰腺导管腺癌(pancreatic ductal adenocarcinoma,PDAC)是最具侵袭性的实体瘤之一,发病率接近死亡率[1],5年总体生存率仅为6%[2],这主要与PDAC的诊断发现晚和放、化疗耐药相关,超过2%的胰腺癌患者就诊时已无法行外科切除并发生转移[3]。针对程序性死亡受体1(programmed celldeath-1,PD-1)、细胞毒性T 淋巴细胞相关蛋白4(cytotoxicT-lymphocyte-associated protein 4,CTLA-4)等免疫检查点阻断(immune checkpoint blockade,ICB)的疗法在黑色素瘤、非小细胞肺癌和头颈部鳞状细胞癌等实体瘤中展现出了强大的治疗潜力,延长了患者的生存期[4-6]。然而,由于PDAC的低免疫原性、免疫抑制细胞浸润和致密纤维组织增生导致的缺氧、药物输送困难等,ICB的单药疗法并未改善PDAC预后[7]。发现PDAC中克服ICB耐药的分子标志物,采取合理的联合疗法是治疗PDAC的有效策略。
1 增强PDAC表面组织相容性复合体Ⅰ(histocom⁃patibility complex Ⅰ,MHC-Ⅰ)和PD-L1的表达
ICB通过阻断表达在T淋巴细胞表面的PD-1与肿瘤细胞或抑制性抗原呈递细胞表面的程序性死亡受体-配体1(programmed cell death-ligand 1,PD-L1)的结合,消减肿瘤细胞对T细胞的抑制作用,从而提高机体免疫系统对肿瘤细胞的攻击性。ICB疗法要实现肿瘤免疫,不仅需要肿瘤细胞表达充足的肿瘤相关抗原、完整的抗原呈递过程、适当的共刺激信号和细胞因子表达,而且需要充足的CD8+T淋巴细胞浸润。
靶向PDAC 中上调组织相MHC-Ⅰ和PD-L1表达的癌蛋白可以募集CD8+T细胞,提高PDAC对ICB的敏感性。其中,功能性激酶是强有力的候选靶点之一。保罗样激酶1(polo-like kinase1,PLK1)、丝裂原活化蛋白激酶(mitogen ac⁃tivated protein kinase,MAPK)和细胞周期蛋白依赖性激酶4/6(cyclin-dependent kinase 4/6,CDK4/6)、白细胞介素-1受体相关激酶4(interleukin-1 receptor associated kinase 4,IRAK4)等激酶不仅与PDAC患者的不良预后呈正相关,而且能够通过抑制PD-L1的表达、减弱PDAC内血管浸润和内皮细胞活化、抑制活化T细胞募集等方式引起ICB耐药[8-10]。因此,抑制PLK1、MAPK、CDK4/6、IRAK4等激酶,可以增强促血管生成因子的分泌,提高CD8+T细胞的脱颗粒能力,提高PDAC模型的抗肿瘤反应和存活率。除了功能性激酶,糖皮质激素受体(glucocorticoid receptor,GR)和热休克蛋白90(heat shock protein 90,HSP90)亦是克服ICB 耐药的候选靶点。PDAC中抑制GR会下调PD-L1同时上调MHC-Ⅰ,促进CD8+T细胞的浸润和活性[11],HSP90通过促进γ-干扰素诱导PD-L1表达,增加PDAC对PD-1治疗的敏感度[12]。此外,靶向自噬溶酶体途径可以改善PDAC对ICB的反应性。自噬是调节PDAC细胞免疫原性的关键因素,PDAC突变蛋白会被蛋白酶体降解为肽段,继而被抗原处理相关转运体(transporter associated with antigen processing,TAP)转运进入内质网腔与新合成的主要MHC-Ⅰ结合,最终通过高尔基体转运至细胞膜被CD8+T细胞识别。当特异性抑制自噬后,PDAC细胞表面MHC-I表达增加,肿瘤相关抗原呈递增强,从而提高CD8+T细胞对PDAC的杀伤作用[13]。表观遗传途径在不改变核苷酸序列的情况下,调控PD-L1的稳定性和膜表达。组蛋白去乙酰化酶3/5(histone deacetylase,HDAC3/5)是重要的表观遗传调节因子,与PD-L1表达呈正相关。当特异性抑制HDAC3/5后,PDAC对PD-1抑制剂的反应性下调[14-15]。棕榈酰化转移酶9(zinc finger DHHC-type contain⁃ing 9,ZDHHC9)能够稳定PDAC细胞的PD-L1蛋白质水平,抑制ZDHHC9可以将PDAC中的免疫抑制性微环境修饰为促炎微环境,抑制PDAC小鼠的肿瘤进展,并延长PDAC小鼠的存活时间[16]。
综上,靶向PDAC细胞中调控PD-L1和MHC-Ⅰ表达或稳定性的激酶、受体蛋白、自噬溶酶体和表观遗传调节因子等,是提高CD8+T细胞抗肿瘤免疫的有力措施。
2 阻滞免疫抑制细胞浸润,改善免疫抑制微环境
克服ICB耐药的靶点不仅局限于PDAC细胞中,免疫系统中的共刺激受体、趋化因子等也可作为候选靶点。血管活性肠肽(vasoactive intestinal polypeptide,VIP)不仅在PDAC中过表达促进PDAC的生长和转移,而且在活化的T细胞中表达上调,抑制T 细胞的活化和增殖,促进调节性T 细胞(regulatory T cells,Treg)和辅助性T 细胞2(T helper 2 cell,Th2)浸润,联合VIP 拮抗剂与PD-1 抗体可消除40% 的PDAC 肿瘤[17]。4-1BB 是表达在活化的CD4+T 细胞、CD8+T细胞、自然杀伤细胞(natural killer cell,NK)细胞、树突状细胞(dendritic cells,DC)、巨噬细胞以及Tregs 上的共刺激受体,淋巴细胞活化基因3(lymphocyte-activation gene 3,LAG-3)是抗原刺激下CD4+和CD8+T细胞上诱导表达的Ⅰ型跨膜蛋白,用来限制T细胞激活。在激活41BB的同时拮抗LAG-3可以增加T细胞亚群和T细胞克隆多样化,减少抑制性髓系细胞生成并降低骨髓细胞的免疫抑制能力,将免疫抑制性肿瘤微环境(tumor micro-environment,TME)重新编程为免疫激活性TME,这种组合疗法在KRAS驱动的小鼠PDAC模型中可以使肿瘤完全消退[18]。
靶向包括骨髓来源的抑制性细胞(myeloid-derived sup⁃pressor cells,MDSC)、肿瘤相关成纤维细胞(cancer associ⁃ated fibroblasts,CAFs)、肿瘤相关巨噬细胞(tumor-associatedMacrophages,TAMs)、和Tregs等免疫抑制细胞,同时联合免疫检查点抑制剂已被证明在PDAC的临床前模型中具有协同抗肿瘤作用[19]。激活MDSC 的Ⅲ型补体受体(type Ⅲcomplement receptor)、干扰素刺激因子(stimulator of inter⁃feron genes,STING)通路,不仅可以减少MDSC在PDAC中的浸润,而且能够增强NK反应性,逆转BM-MDSC对T细胞的抑制,使ICB 在无反应PDAC 模型中生效[20-21];抑制介导MDSC向PDAC组织迁移的CC基序趋化因子受体2/5(C-Cmotif chemokine receptor 2/5,CCR2/5),可以增强效应T细胞和记忆T细胞浸润,抑制Treg细胞,实现更好的生存效应和肿瘤控制[22];集落刺激因子1 受体(colony-stimulating factor1 receptor,CSF-1R)会增强巨噬细胞对抗原的呈递能力,同时上调T细胞表面的PD-L1和细胞毒性T细胞相关蛋白-4(cytotoxic T lymphocyte associate protein-4,CTLA4)等T细胞检查点分子,从而改善PDAC小鼠模型对T细胞检查点免疫治疗的反应[19]。CAF是TME中的主要基质群之一,在ICB耐药中发挥关键作用。CAF通过旁分泌缺氧诱导因子1(hy⁃poxia inducible factor-1,HIF-1),使TAM 向M2 型极化并募集Tregs[23];过表达脯氨酸顺反异构酶1(protein interactingwith never in mitosis A1,PIN1)的CAF会驱动结缔组织增生,促进免疫抑制相关细胞因子分泌,抑制CAF中的HIF-1或PIN1通过阻碍CAF细胞增殖、抑制PDAC细胞对PD-L1的内吞作用和溶酶体降解增强ICB的疗效[24];富含亮氨酸重复序列15(leucine-rich repeat-containing protein 15,LRRC15)的CAF不存在于在正常胰腺组织,但是浸润于PDAC中且与PDAC 对ICB 的不良反应有关,靶向LRRC15+CAF 为促进PDAC患者对ICB的治疗反应具有重要意义[25]。除了致密细胞外基质和CAFs的免疫抑制行为外,TAM的高丰度和强活性是PDAC免疫应答的主要障碍之一[9],TAM不仅介导免疫抑制,还促进PDAC的转移性播散,增强PDAC对细胞毒性治疗的抵抗性,TAM 抑制与ICB 结合已经在PDAC 临床前模型中显示出一定疗效[26]。阻断TAM 分泌肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α),从而减弱PDAC细胞中白细胞介素33(interleukin 33,IL-33)的表达,能够减轻PDAC荷瘤小鼠的转移负担并增加生存率,提高PDAC ICB治疗的有效性[27]。事实上,巨噬细胞通过分泌颗粒蛋白,同样诱导PDAC TME中纤维化基质的形成,抑制巨噬细胞颗粒蛋白产生并重编髓源性巨噬细胞为M1样免疫原性表型可以降低转移性肿瘤负荷,协同PD-1发挥抗肿瘤效果[28-29]。此外,靶向中性粒细胞也是克服ICB 耐药的候选。白细胞介素17(interleukin 17,IL17)是PDAC 发生过程中由CD4+T 细胞和γδT细胞分泌的细胞因子,通过募集中性粒细胞,减少CD8+T细胞浸润和活化来维持PDAC TME的免疫抑制[30],阻断IL17可增加PDAC对ICB的敏感性。
PDAC通常以酸性TME为特征,酸度可以钝化先天性和适应性免疫的抗肿瘤反应,当暴露于高水平的乳酸或低pH环境时,T细胞和NK功能失调,有利于免疫抑制性骨髓细胞和Treg。此外,TME的酸度也会直接影响ICB的治疗效果。因此酸性环境有利于癌症进展、ICB耐药和免疫逃避。溶质载体家族成员4(solute carrier family 4,SLC4)是PDAC 中表达最丰富的碳酸氢盐转运蛋白,抑制SLC4通过减轻细胞外碳酸氢盐的积累,弱化糖酵解生成的乳酸,从而减轻TME的酸化,增加CD8+T细胞浸润,提高ICB疗效[31]。因此,参与免疫抑制性TME形成的共刺激受体、趋化因子、酸度调节分子等是克服ICB耐药的有力候选靶点。
3 肿瘤疫苗、能量消融、光动力疗法等联合手段
肿瘤疫苗与ICB联合是克服ICB耐药的策略之一,因为肿瘤疫苗增加TME中抗原特异性T细胞的浸润,可以更好地识别可作用的肿瘤底物。研究表明,接种胃泌素疫苗后CD8+T细胞活化并流入PDAC瘤体,改善PDAC对ICB的反应[32]。溶瘤病毒是疫苗局部接种的一种形式,不仅通过感染、裂解PDAC细胞,导致局部炎症、免疫系统刺激和肿瘤相关抗原释放,而且可以通过基因工程表达各种功能蛋白。CF33-hNIS-anti PD-L1是一种携带人碘化钠同体转运蛋白(hNIS)和抗PD-L1抗体的基因工程嵌合牛痘病毒(CF33),注射CF33-hNIS-anti PDL1后牛痘病毒会特异性感染PDAC细胞,使得PDAC不仅上调PD-L1的表达,而且产生特异性抗PD-L1抗体诱导CD8+T细胞的活化。在PDAC的临床前模型中,CF33-hNIS-anti PD-L1的早期腹腔给药降低了小鼠的肿瘤负荷,延迟PDAC进展时间,延长PDAC小鼠的生存期[33]。同样,借助基因工程的方法,细胞因子嵌合体PD-1-IL2v 通过PD-1 的定位将IL2v 精确地递送到TME 中表达PD-L1的T细胞表面,诱导干细胞样CD8+T细胞大量浸润,导致小鼠PDAC消退并提高存活率[34]。
内窥镜超声引导射频消融术可以增加肿瘤抗原脱落,重塑PDAC TME,提高肿瘤中的DC数量,将肿瘤浸润性中性粒细胞极化为抗肿瘤表型,同时促进远隔反应,抑制肿瘤生长[35]。辐射可以增强PDAC免疫原性和PD-L1表达,是ICB的候选联合策略,共济失调毛细血管扩张突变蛋白(ataxiatelangiectasiamutated protein,ATM)是辐射诱导的DNA损伤反应中的激酶,抑制ATM 通过TANK 结合激酶1(TANKbinding kinase 1,TBK1)依赖性地增加PDAC中I型干扰素信号的表达,通过ATM 抑制结合ICB 和放疗可以增强ICB 在PDAC中的疗效[36]。不可逆电穿孔诱导PDAC细胞免疫原性死亡,激活DC,减轻基质诱导的免疫抑制,与PD-1抗体组合促进了CD8+T细胞的选择性浸润,显著延长原位PDAC小鼠模型的存活期[37]。光动力疗法(photodynamic therapy,PDT)是指在特定的光照射下,光敏剂可以产生大量的活性氧自由基驱动肿瘤细胞的免疫原性细胞死亡,同时释放钙网蛋白、高迁移率族蛋白B1、三磷酸腺苷等信号,以吸引和激活抗原呈递细胞,导致适应性免疫的激活,增强抗肿瘤免疫。但是,PDT驱动的耗氧和微血管损伤会进一步加重缺氧,导致乳酸蓄积和免疫抑制TME,损害细胞因子的产生和肿瘤免疫监测,促进肿瘤存活。因此,PDT联合糖酵解抑制剂的策略是ICB疗法的补充策略,溴结构域蛋白4(bromodomain-containing protein 4,BRD4)抑制剂联合超分子纳米颗粒,在启动肿瘤细胞的免疫原性细胞死亡、促进DC成熟、激活CD8+T清除肿瘤的同时,阻断c-Myc和c-Myc通路下游基因(己糖激酶2和乳酸脱氢酶)的转录,缓解PDT引起的糖酵解和免疫抑制TME,特异性下调PDAC细胞表面的γ PD-L1表达,对抗PDT诱导的适应性免疫逃避[38]。
近年来,利用纳米技术递送化疗药物与生物大分子药物(如多肽、抗体、核酸等),为克服肿瘤耐药提供了新途径,因为纳米粒子介导的免疫检查点抑制剂递送不仅可以保护抑制剂不被体内复杂的因素降解,而且可以控制抑制剂的定位和释放。基于可生物降解的聚合物胶束的纳米制剂有基质调节的功能,用纳米聚合物胶束包裹音猬蛋白抑制剂和紫杉醇联合PD-1抗体的组合延长了原位PDAC小鼠模型以及基因工程PDAC小鼠模型的存活期,其中抑制音猬蛋白会阻止CAF产生纤维化基质,增加肿瘤内脉管系统密度从而促进CD8+T细胞的肿瘤浸润,同时不会消耗基质中抑制肿瘤的α-平滑肌阳性肌成纤维细胞和I型胶原蛋白,提示基质调节纳米制剂是增强PDAC ICB耐药的又一选择[39]。
4 结语
由于PDAC的低免疫原性和免疫抑制微环境,免疫检查点抑制剂在PDAC中无反应的治疗现状令人沮丧,研究者们致力于开发新的联合治疗措施改良免疫检查点抑制剂在PDAC 中的应用。一方面,靶向PDAC 细胞中调控PD-L1、MHC-Ⅰ的癌基因,比如细胞周期相关激酶、自噬受体、表观遗传调控酶等,增加肿瘤相关抗原的呈递和CD8+T细胞浸润,可以提高PDAC 对PD-1 抗体的敏感性,在ICB 耐药的PDAC 临床前模型中已初见成效。另一方面,靶向MDSC、TAMs、CAFs等发挥免疫抑制功能的关键效应因子,比如补体受体、趋化因子受体、干扰素等,通过改良PDAC中的免疫抑制微环境,抑制成纤维细胞增生、阻滞巨噬细胞浸润和M2型极化,增加CD8+细胞浸润,是增强ICB治疗疗效的又一解决方案。此外,借助能量消融、PDT、纳米材料包裹等联合策略为克服ICB耐药提供了更多的治疗选择。然而,以上研究结论仍停留在一定的临床前模型上,还需要更多的临床前和临床研究来确定PDAC ICB疗法的合理组合。
参考文献
[1] Siegel RL,Miller KD,Fuchs HE,et al. Cancer statistics,2021[J].
CA a Cancer J Clin,2021,71(1):7-33.
[2] McGuigan A,Kelly P,Turkington RC,et al. Pancreatic cancer:a
review of clinical diagnosis,epidemiology,treatment and outcomes[J].
World J Gastroenterol,2018,24(43):4846-4861.
[3] von Hoff DD,Ervin T,Arena FP,et al. Increased survival in pan⁃
creatic cancer with nab-paclitaxel plus gemcitabine[J]. N Engl J Med,
2013,369(18):1691-1703.
[4] Harrington KJ,Ferris RL,Blumenschein G Jr,et al. Nivolumab
versus standard,single-agent therapy of investigator’s choice in recur⁃
rent or metastatic squamous cell carcinoma of the head and neck
(CheckMate 141):health-related quality-of-life results from a ran⁃
domised,phase 3 trial[J]. Lancet Oncol,2017,18(8):1104-1115.
[5] Reck M,Rodríguez-Abreu D,Robinson AG,et al. Pembrolizumab
versus chemotherapy for PD-L1-positive non-small-cell lung cancer
[J]. N Engl J Med,2016,375(19):1823-1833.
[6] Robert C,Schachter J,Long GV,et al. Pembrolizumab versus ipili⁃
mumab in advanced melanoma[J]. N Engl J Med,2015,372(26):2521-
2532.
[7] Riquelme E,Maitra A,McAllister F. Immunotherapy for pancre⁃
atic cancer:more than just a gut feeling[J]. Cancer Discov,2018,8(4):
386-388.
[8] Zhang ZZ,Cheng LJ,Li J,et al. Targeting Plk1 sensitizes pancreatic
cancer to immune checkpoint therapy[J]. Cancer Res,2022,82(19):
3532-3548.
[9] Zhang YQ,Velez-Delgado A,Mathew E,et al. Myeloid cells are re⁃
quired for PD-1/PD-L1 checkpoint activation and the establishment of
an immunosuppressive environment in pancreatic cancer[J]. Gut,2017,
66(1):124-136.
[10] Somani VK,Zhang DX,Dodhiawala PB,et al. IRAK4 signaling
drives resistance to checkpoint immunotherapy in pancreatic ductal ad⁃
enocarcinoma[J]. Gastroenterology,2022,162(7):2047-2062.
[11] Deng YL,Xia XH,Zhao Y,et al. Glucocorticoid receptor regu⁃
lates PD-L1 and MHC-I in pancreatic cancer cells to promote immune
evasion and immunotherapy resistance[J]. Nat Commun,2021,12(1):
7041.
[12] Liu J,Kang R,Kroemer G,et al. Targeting HSP90 sensitizes pan⁃
creas carcinoma to PD-1 blockade[J]. Oncoimmunology,2022,11(1):
2068488.
[13] Yamamoto K,Venida A,Perera RM,et al. Selective autophagy of
MHC-I promotes immune evasion of pancreatic cancer[J]. Autophagy,
2020,16(8):1524-1525.
[14] Hu GF,He N,Cai CQ,et al. HDAC3 modulates cancer immunity
via increasing PD-L1 expression in pancreatic cancer[J]. Pancreatology,
2019,19(2):383-389.
[15] Zhou YK,Jin X,Yu HX,et al. HDAC5 modulates PD-L1 expres⁃
sion and cancer immunity via p65 deacetylation in pancreatic cancer[J].
Theranostics,2022,12(5):2080-2094.
[16] Lin ZQ,Huang KK,Guo H,et al. Targeting ZDHHC9 potentiates
anti-programmed death-ligand 1 immunotherapy of pancreatic cancer
by modifying the tumor microenvironment[J]. Biomedecine Pharmaco⁃
ther,2023,161:114567.
[17] Ravindranathan S,Passang T,Li JM,et al. Targeting vasoactive
intestinal peptide-mediated signaling enhances response to immune
checkpoint therapy in pancreatic ductal adenocarcinoma[J]. Nat Com⁃
mun,2022,13(1):6418.
[18] Gulhati P,Schalck A,Jiang S,et al. Targeting T cell checkpoints
41BB and LAG3 and myeloid cell CXCR1/CXCR2 results in antitumor
immunity and durable response in pancreatic cancer[J]. Nat Cancer,
2023,4(1):62-80.
[19] Zhu Y,Knolhoff BL,Meyer MA,et al. CSF1/CSF1R blockade re⁃
programs tumor-infiltrating macrophages and improves response to Tcell
checkpoint immunotherapy in pancreatic cancer models[J]. Cancer
Res,2014,74(18):5057-5069.
[20] Panni RZ,Herndon JM,Zuo C,et al. Agonism of CD11b repro⁃
grams innate immunity to sensitize pancreatic cancer to immunothera⁃
pies[J]. Sci Transl Med,2019,11(499):eaau9240.
[21] Ager CR,Boda A,Rajapakshe K,et al. High potency STING ago⁃
nists engage unique myeloid pathways to reverse pancreatic cancer im⁃
mune privilege[J]. J Immunother Cancer,2021,9(8):e003246.
[22] Wang JX,Saung MT,Li KY,et al. CCR2/CCR5 inhibitor permits
the radiation-induced effector T cell infiltration in pancreatic adenocar⁃
cinoma[J]. J Exp Med,2022,219(5):e20211631.
[23] Garcia Garcia CJ,Huang YQ,Fuentes NR,et al. Stromal HIF2
regulates immune suppression in the pancreatic cancer microenviron⁃
ment[J]. Gastroenterology,2022,162(7):2018-2031.
[24] Koikawa K,Kibe S,Suizu F,et al. Targeting Pin1 renders pancre⁃
atic cancer eradicable by synergizing with immunochemotherapy[J].
Cell,2021,184(18):4753-4771.
[25] Dominguez CX,Müller S,Keerthivasan S,et al. Single-cell RNA
sequencing reveals stromal evolution into LRRC15+ myofibroblasts as a
determinant of patient response to cancer immunotherapy[J]. Cancer Dis⁃
cov,2020,10(2):232-253.
[26] Lopez-Yrigoyen M,Cassetta L,Pollard JW. Macrophage targeting
in cancer[J]. Ann N Y Acad Sci,2021,1499(1):18-41.
[27] Dixit A,Sarver A,Zettervall J,et al. Targeting TNF-α-producing
macrophages activates antitumor immunity in pancreatic cancer via IL-
33 signaling[J]. JCI Insight,2022,7(22):e153242.
[28] Quaranta V,Rainer C,Nielsen SR,et al. Macrophage-derived
granulin drives resistance to immune checkpoint inhibition in metastatic
pancreatic cancer[J]. Cancer Res,2018,78(15):4253-4269.
[29] Wang W,Marinis JM,Beal AM,et al. RIP1 kinase drives
macrophage-mediated adaptive immune tolerance in pancreatic cancer
[J]. Cancer Cell,2020,38(4):585-590.
[30] Zhang Y,Chandra V,Riquelme Sanchez E,et al. Interleukin-17-
induced neutrophil extracellular traps mediate resistance to checkpoint
blockade in pancreatic cancer[J]. J Exp Med,2020,217(12):e20190354.
[31] Cappellesso F,Orban MP,Shirgaonkar N,et al. Targeting the
bicarbonate transporter SLC4A4 overcomes immunosuppression and
immunotherapy resistance in pancreatic cancer[J]. Nat Cancer,2022,3
(12):1464-1483.
[32] Osborne N,Sundseth R,Burks J,et al. Gastrin vaccine improves
response to immune checkpoint antibody in murine pancreatic cancer
by altering the tumor microenvironment[J]. Cancer Immunol Immuno⁃
ther,2019,68(10):1635-1648.
[33] Zhang ZF,Yang AN,Chaurasiya S,et al. CF33-hNIS-antiPDL1
virus primes pancreatic ductal adenocarcinoma for enhanced anti-PDL1
therapy[J]. Cancer Gene Ther,2022,29(6):722-733.
[34] Tichet M,Wullschleger S,Chryplewicz A,et al. Bispecific PD1-
IL2v and anti-PD-L1 break tumor immunity resistance by enhancing
stem-like tumor-reactive CD8+ Tcells and reprogramming macrophages
[J]. Immunity,2023,56(1):162-179.
[35] Faraoni EY,O’Brien BJ,Strickland LN,et al. Radiofrequency ab⁃
lation remodels the tumor microenvironment and promotes neutrophilmediated
abscopal immunomodulation in pancreatic cancer[J]. Cancer
Immunol Res,2023,11(1):4-12.
[36] Zhang Q,Green MD,Lang XT,et al. Inhibition of ATM increases
interferon signaling and sensitizes pancreatic cancer to immune check⁃
point blockade therapy[J]. Cancer Res,2019,79(15):3940-3951.
[37] Zhao J,Wen XF,Tian L,et al. Irreversible electroporation re⁃
verses resistance to immune checkpoint blockade in pancreatic cancer
[J]. Nat Commun,2019,10(1):899.
[38] Sun F,Zhu QR,Li TL,et al. Regulating glucose metabolism with
prodrug nanoparticles for promoting photoimmunotherapy of pancreatic
cancer[J]. Adv Sci,2021,8(4):2002746.
[39] Zhao J,Xiao ZL,Li TT,et al. Stromal modulation reverses pri⁃
mary resistance to immune checkpoint blockade in pancreatic cancer[J].
ACS Nano,2018,12(10):9881-9893.
(责任编辑:曾 玲)