摘""""" 要: 随着人类生活质量的提高,胆固醇的检测成为一个重要的研究课题。电化学方法具有选择性强、检测速度快等优点。综述了近年来利用电化学方法在有酶和无酶的条件下测定胆固醇含量的电化学原理和最新进展,并对用电化学方法检测胆固醇进行了展望。
关" 键" 词:胆固醇;有酶;无酶;电化学传感器
中图分类号:O657.1"""" 文献标识码: A"""" 文章编号: 1004-0935(2023)08-1193-04
胆固醇是一种化学式为C27H46O的环戊烷多氢菲的衍生物。胆固醇是人体内最普遍存在的化合物,主要存在于大脑的中枢神经组织,另外还存在于肾脏、脾脏、皮肤以及胆汁。胆固醇能经由多种途径进入身体。高胆固醇会引起慢性心脏病、高血压、脑血栓等致命的心脑血管病[1-2]。目前,胆固醇的检测方法有高效液相色谱法[3-4],比色法[5-6]和光谱法[7-8]等,这些检测方法一般存在检测周期长、灵敏度低、选择性、仪器标准化、样品预处理要求高等缺点。另一方面,电化学方法[9-10]由于具有选择性强、制备方法简单、仪器简单、成本低、操作方便、检测速度快等特点,受到研究者的广泛关注[11]。电化学检测胆固醇的方法包括包括差分脉冲伏安法(DPV)[12]、安培法[13-14,15-17]、电荷转移(CT)[18]、循环伏安法(CV)[19-22]、线性扫描伏安法""""" (LSV)[23-24]、电化学发光法(ECL)[25]和电化学阻抗谱(EIS)[26]。在这些方法中,电流测量法是许多研究中最常用和最敏感的方法[27]。随着技术的发展,基于各种材料制备出的胆固醇电化学传感器成为研究热点之一。
1" 电化学方法检测胆固醇的原理
1.1" 基于胆固醇氧化酶电化学检测胆固醇的原理
胆固醇氧化酶(ChOx)是一种含有黄素腺嘌呤二核苷酸(FAD)的叶黄素酶,在氧气存在下催化胆固醇,生成胆固醇-4-烯-3-酮和H2O2[28]。基于ChOx电化学检测胆固醇的原理主有3类,如图1所示。
第一类:氧气作为电子传输介质,用氧电极或H2O2电极测量氧消耗或氧化产物H2O2浓度来检测胆固醇含量。
第二类:使用电子介体,如二茂铁及其衍生" 物[29-30]、铁氰化物[31]、染料分子[32-33]和苯酚[34]等,替代氧气和H2O2在电极表面和ChOx活性中心之间(FAD)有效传递电子,通过检测电子介体在电极表面氧化还原得失电子数检测胆固醇的含量。
第三类:随着各种新型电极材料的研制,基于电极与ChOx之间的直接电子转移(DET)的电化学检测胆固醇方法也随之产生,胆固醇的含量可以通过酶在电极表面的直接氧化还原得失电子数来测定。
1.2" 无酶电化学检测胆固醇的原理
为了克服酶在使用过程中受到储存和分析条件的限制,近年发展了无酶电化学检测胆固醇的方法。无酶电化学测定是通过直接在电极表面电化学催化胆固醇或通过氧化还原剂电子介质来传导胆固醇与电极表面电子进行间接检测,如图2所示。
2" 电化学检测胆固醇研究进展
2.1 "基于胆固醇氧化酶电化学检测胆固醇的进展
基于ChOx的胆固醇电化学检测是通过固化附着在工作电极表层上的ChOx 特异性识别和催化胆固醇,利用天然化学物质如氧气为主要电子传递介质,来测定氧气消耗及ChOx氧化产物含量的传感器。其主要机理是ChOx催化游离胆固醇在O2存在下生成胆固醇-4-烯-3-酮和H2O2,然后用氧电极或H2O2电极测定胆固醇含量。夏天子[35]等利用一类新型的二维过渡金属碳化物、氮化物(MXene)和壳聚糖(Chit)的有益特性设计成了胆固醇传感器,如图3所示。Chit和Ti3C2Tx作为支撑ChOx的底物,并在提高电导率方面发挥作用。修饰电极对H2O2电化学响应与胆固醇浓度在0.3~4.5 nmol·L-1之间有良好的线性关系,它的检测限为0.11 nmol·L-1,灵敏度为132.66 μA·(nmol·L-1)-1·cm-2。
薛中华[36]等研制出具有类似于过氧化物酶的特性MoS2@PBNCS,对3,3',5,5'-四甲基联苯胺(TMB)与H2O2 反应起到催化作用。在最佳实验条件下,胆固醇的浓度与TMB的还原电流在0.3~100 µmol·L-1成良好的线性关系,检出限为12 nmol·L-1。SALAZAR等开发了一种利用镍氧化物(NiO)修饰电极的胆固醇电化学传感器[37]。他们发现,在中性环境下,NiO改性电极可以有效地探测H2O2,将NiO修饰电极与ChOx组装成胆固醇电化学生物传感器,灵敏度达到7.8 μA·(mmol·L-1)-1·cm-2,检测线为""" 20 μmol·L-1。总体上,这种检测方法借助ChOx氧化产物浓度来测量胆固醇,使用这种方法会存在很多干扰物质,反应时需要借助游离氧的催化作用,可能会造成实验结果不准确。
基于电子介质和ChOx的电化学检测胆固醇是利用电子介质作为电极和ChOx电活性中心之间的电子传递通道,透过测量小分子电子介质的电化学信号的改变来测量胆固醇含量。HALDER等将二茂铁作为电子介质,利用高支化多聚物基质将ChOx和石墨烯纳米片连接制修饰电极,对胆固醇的检测限为0.5 µmol·L-1,线性响应范围为2.5~25μmol·L-1,灵敏度380 mA·(mol·L-1)-1·cm-2[37]。此方法可以使用的电子介质有限,需要进一步的探索。介质仍然会与血液中的干扰物质发生反应,影响准确性和效率,同时很难在电极和酶表面附近保持介质的存在。
利用酶与电极表面的直接电子传递来检测胆固醇。范佳琳等将泡沫介孔硅(MCF)修饰的还原氧化石墨烯复合材料(McF@rGo)作为修饰电极,MCF的多孔给固定酶提供了很好的场所,在MCFs@rGO的辅助下,可以在固定化ChOx和电极之间实现有效的DET[38]。碳材料由于比表面积大"" (3 000 m2·0-1)、无毒、来源丰富、成本低廉、导电性好、绿色环保以及良好的化学稳定性等优点而被广泛应用[39]。另外,导电聚合物、金属纳米材料、复合材料等材料也可以实现固定化ChOx和电极之间实现的DET[40-46]。WU[47]等利用分层组装(LBL)技术开发了一种胆固醇电化学传感器,它由水溶性聚乙烯亚胺还原氧化石墨烯复合材料和ChOx组成的。在优化条件下,所制备的电极的胆固醇浓度呈较宽的线性范围1×10-5~9.331×10-3mol·L-1,检测限为0.021 μmol·L-1。这种检测过程不受电活性物质的干扰,不受溶解氧的影响,大大减少了溶解氧与电极之间竞争再生酶的干扰效应。
2.2" 无酶胆固醇电化学传感器研究进展
非酶胆固醇传感器主要是借助金属纳米材料使胆固醇在电极表面直接电化学氧化。AKSHAYA[22]等通过包覆聚吡啶的磷酸钌纳米团簇促进胆固醇的电化学氧化来测量胆固醇,如图4所示。分散在聚吡咯中的聚吡咯纳米团簇促进胆固醇的电化学氧化,发生负电位转移,胆固醇的OH基团被氧化为—C=O基团。电化学线性响应范围为"nbsp;" 0.16~20.0 nmol0电-1,检测限为5.4×10-9 mol·L-1。 KHALIQ[14]等研究了一种基于Cu2O-TiO2杂化纳米结构的新型安培非酶促胆固醇电化学传感器。通过钛(Ti)箔的阳极氧化反应合成了二氧化钛纳米管(TNTs),表面通过化学浴沉积(CBD)方法负载上氧化铜纳米颗粒(NPs"),制备得到的样品具有较好的形貌。这种材料具有良好的电化学活性、稳定性以及较好的抗静电性等特点。"在添加胆固醇后,与原始的低检测限(0.05 µmol·L-1)和快速响应时间(3 s)相比,混合电极的灵敏度增加了5倍。THAKUR[12]等开发了一种基于聚(离子液体)-钴聚氧金属酸盐的新型电化学传感器,该新型复合材料对胆固醇的非酶电化学检测限最低为 1 fmol·L-1 (1×10-15 mol·L-1),响应时间为5 s,灵敏度为""" "64 µA·(µmol·L-1)-1·cm-2。非酶基胆固醇传感器最大的优点是易于实现长期稳定的目标检测,克服了生物酶对环境温度、pH值等因素的脆弱性,为快速电子迁移提供了优化界面,并支持高性能连续监控应用场景。
3" 结 论
酶的使用受到储存和分析条件的限制,成本很高。由于这些限制,研究者们正在努力开发新的无酶胆固醇电化传感器。无酶胆固醇电化学传感器作为新一代的胆固醇传感器,比酶基胆固醇电化学传感器具有更好的性能和研究前景。目前,胆固醇直接电化学氧化的机理尚不清楚,需要进一步研究。 大多数用于人体胆固醇含量检测的新型电极有待开发。随着技术的进一步发展和推广,高性能胆固醇电化学检测仪器将为高血压和心血管疾病患者带来福音。
参考文献:
[1] IKONEN E.Mechanisms \"https://journals.physiologynsport: defects and human disease[J].Phys Rev,2006,86(4) : 60-63.
[2] AHARONIAN F, AN Q, AXIKEGU, et al. Construction and on-site performance of the LHAASO WFCTA camera [J]. The European Physical Journal C, 2021, 81(7):1041-1049.
[3] GRUN C H, BESSEAU S. Normal-phase liquid chromatography- atmospheric-pressure photoionization-mass spectrometry analysis of cholesterol and phytosterol oxidation products [J]. J Chromatogr A, 2016, 1439: 74-81.
[4] ZHAO H T, YANG Y, CHIN L K, et al. Correction: Optofluidic lens with low spherical and low field curvature aberrations [J]. Lab Chip, 2016, 16(11): 2135-2143.
[5] 马丽娜,葛庆联,陈大伟,等. 酶比色法测定禽蛋中的胆固醇含量[J]. 食品安全质量检测学报,2017(8):2880-2884.
[6] NIRALA N R, SAXENA P S, SRIVASTAVA A. Colorimetric detection of cholesterol based onenzyme modified gold nanoparticles[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 190:506-512.
[7] ODO J, INOGUCHI M, OHIRA S, et al. Spectrophotometric determination of hydrogen peroxide, glucose, uric acid, and cholesterol using peroxidase-like activity of an Fe(III) complex othiacalix[4]arenetetrasulfonate attached to an anion-exchanger Takayama A[J].Anal Sci,2013,29( 11) :1041.
[8] LOTFY H M, HEGAZY M A M.Simultaneous determination of some cholesterol-lowering drugs in their binary mixture by novel spectrophotometric methods[J]. Spectrochim Acta A,2013,113: 107-114.
[9] MARTÍN M,SALAZAR P,LVAREZ R,et al.Cholesterol biosensing with a polydopamine-modified nanostructured platinum electrode prepared by oblique angle physical vacuum deposition[J]. Sens Actuators B,2017,240: 37-45.
[10] 张秀花,万凯,梁振兴,等. 基于聚吡咯的胆固醇电化学生物传感器的制备及性能研究[J]. 现代食品科技,2015(4):170-174.
[11] ZHANG Y H,WANG E K.Chin J Anal Lab,1993,12( 5) : 1617-1624.
[12] THAKUR N,KUMAR M, DAS A S, et al. PVIM-Co(5)POM/MNC composite as a flexible electrode for the ultrasensitive and highly selective non-enzymatic electrochemical detection of cholesterol [J]. Chem Commun (Camb), 2019, 55(34): 5021-5024.
[13] LATA K, DHULL V, HOODA V. Fabrication and optimization of ChE/ChO/HRP-AuNPs/c-MWCNTs based silver electrode for determining total cholesterol in serum [J]. Biochem Res Int, 2016, 2016: 1545206-1545217.
[14] KHALIQ N, RASHEED M A, CHA G, et al. Development of non-enzymatic cholesterol bio-sensor based on TiO2 nanotubes decorated with Cu2O nanoparticles [J]. Sensors and Actuators B: Chemical, 2020, 302-340.
[15] SHUKLA S K,TURNER A P,TIWARI A. Cholesterol oxidase functionalised polyaniline/carbon nanotube hybrids for an amperometric biosensor [J]. J Nanosci Nanotechnol, 2015, 15(5): 3373-3380.
[16] SHRESTHA B K, AHMAD R, SHRESTHA S, et al. In situ synthesis of cylindrical spongy polypyrrole doped protonated graphitic carbon nitride for cholesterol sensing application [J]. Biosens Bioelectron, 2017, 94: 686-789.
[17] PHETSANG S, JAKMUEE J, MUNGKORNASWAKUL P, et al. Sensitive amperometric biosensors for detection of glucose and cholesterol using a platinum/reduced graphene oxide/poly (3-aminobenzoic acid) film-modified screen-printed carbon electrode [J]. Bioelectrochemistry, 2019, 127: 125-160.
[18] XU H, ZHOU S, JIANG D, et al. Cholesterol oxidase/triton X-100 parked microelectrodes for the detection of cholesterol in plasma membrane at single cells [J]. Anal Chem, 2018, 90(2): 1054-1062.
[19]ANTUCH M, MATOS-PERLTA Y, LLANES D, et al. Bimetallic Co2+ and Mn2+ hexacyanoferrate for hydrogen peroxide electrooxidation and its application in a highly sensitive cholesterol biosensor [J]. ChemElectroChem, 2019, 6(5): 1567-1640.
[20] WU S, CHEN J, LIU D, et al. A biocompatible cerasome based platform for direct electrochemistry of cholesterol oxidase and cholesterol sensing [J]. RSC Advances, 2016, 6(75): 70781-71881.
[21] LIU X, NAN Z, QIU Y, et al. Hydrophobic ionic liquid immoblizing cholesterol oxidase on the electrodeposited Prussian blue on glassy carbon electrode for detection of cholesterol [J]. Electrochimica Acta, 2013, 90: 203-212.
[22] AKSHAYA" K, VARGHESE A, NIDHIN M, et al. Amorphous Ru-Pi nanoclusters coated on polypyrrole modified carbon fiber paper for non-enzymatic electrochemical determination of cholesterol [J]. Journal of The Electrochemical Society, 2019, 166(12): B1016-B1027.
[23] HUANG Y, TAN J, CUI L, et al. Graphene and Au NPs co-mediated enzymatic silver deposition for the ultrasensitive electrochemical detection of cholesterol [J]. Biosens Bioelectron, 2018, 102: 560-567.
[24] ZHU J,YE Z,FAN X, et al.Lotus sprout-templated porous cobalt-doped borate bioglass with antibacterial properties and multiple-layered osteogenic promotion[J].Int. J Nanomed, 2019, 14, 835-850.
[25] YUAN Z. The photoacoustic spectral reconstruction method [J]. Journal of Biosensors amp; Bioelectronics, 2012, 03(01):288-292.
[26] LEE Y J, EOM K S, SHIN K S, et al. Enzyme-loaded paper combined impedimetric sensor for the determination of the low-level of cholesterol in saliva [J]. Sensors and Actuators B: Chemical, 2018, 271: 73-81.
[27] UMAR A, RAHMAN M M, AL-HAJRY A, et al. Highly-sensitive cholesterol biosensor based on well-crystallized flower-shaped ZnO nanostructures [J]. Talanta, 2009, 78(1): 284-293.
[28] ARYA S K, DATTA M, MALHOTRA B D. Recent advances in cholesterol biosensor [J]. Biosens Bioelectron, 2008, 23(7): 1083-1183.
[29] ZHENG L, SUN J, XIONG L, et al. Improving the performance of platinum nanocrystal catalysts by square-wave potential electrochemical pretreatment [J]. Fuel Cells, 2010, 10(3): 384-393.
[30] NIRALA N R, SAXENA P S, SRIVASTAVA A. Colorimetric detection of cholesterol based onenzyme modified gold nanoparticles[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 190:506-512.
[31] XU C X,HUANG K J, LU L,et al." A novel electro- chemicalnovel electrot construction based on layered CuS-graphene composite and Au nanoparticles[J]. Anal. Bioanal.Chem,2014,406,6943-6951.
[32] YUAN B, XU C, ZHANG D, et al. Electrografting of amino-TEMPO on graphene oxide and electrochemically reduced graphene oxide for electrocatalytic applications[J].Electrochemistry Communications, 2017, 81:18-23.
[33] PERIRA A C, AGUIAR M R, KISNER A, et al. Amperometric biosensor for lactate based on lactate dehydrogenase and Meldola Blue coimmobilized on multi-wall carbon-nanotube [J]. Sensors and Actuators B: Chemical, 2007, 124(1): 269-345.
[34] ABDUL-HAMEAD A "A, OTHMAN F M, FAKHRI M "A."" FAKHRI MD A: 269-MnO2 nanocomposite particles for cholesterol sensors[J]. Journal of Materials Science: Materials in Electronics, 2021,32(11):15523-15532.
[35] XIA T, LIU G, WANG J, et al. MXene-based enzymatic sensor for highly sensitive and selective detection of cholesterol [J]. Biosens Bioelectron, 2021, 183: 113243-113250.
[36] 薛中华,彭昊,薛新,等.二硫化钼-普鲁士蓝纳米酶的制备及其对胆固醇的电化学传感[J].西北师范大学学报(自然科学版),2019,55(3):59-65.
[37] SHRESTHA B K,AHMAD R,SHRESTHA S,et al.In situ synthesis of cylindrical spongy polypyrrole doped protonated graphitic carbon nitride for cholesterol sensing application[J]. Biosens. Bioelectron, 2017, 94:686-693.
[38]CUI L, LU M, LI Y, et al. A reusable ratiometric electrochemical biosensor on the basis of the binding of methylene blue to DNA with alternating AT base sequence for sensitive detection of adenosine[J]. Biosensors amp; Bioelectronics, 2018, 102:87-93.
[39] 李红霞,吴杰,苟小峰,等.MOFs的制备及电化学性能的研究[J].当代化工,2022,51(5):1103-1107.
[40] WANG H, TENG F, ZHANG L, et al. Meso-cellular silicate foam-modified reduced graphene oxide with a sandwich structure for enzymatic immobilization and bioelectrocatalysis [J]. ACS Appl Mater Interfaces, 2019, 11(33): 29522-29558.
[41] SHARMA D, LEE J, SEO J, et al.RapidRLINK \"https://www.sciencedirect.com/science/article/pi2 quantum dots fluorescence turn-off[J].Sensors,2017,17( 9) : 824-827.
[42] WANG K, LI Z, WANG C, et al.Assembled cationic dipeptide-gold nanoparticle hybrid microspheres for electrochemical biosensors with enhanced sensitivity[J]. Colloid Interface Sci,2019,557: 628-633.
[43] XIA T, LIU G, WANG J, et al. MXene-based enzymatic sensor for highly sensitive and selective detection of cholesterol [J]. Biosens Bioelectron, 2021, 183: 113243-113258.
[44] PHERSANG S, JAKMUNEE J, MUNGKORNAWAKUL P, et al. Sensitive amperometric biosensors for detection of glucose and cholesterol using a platinum/reduced graphene oxide/poly(3- aminobenzoic acid) film-modified screen-printed carbon electrode [J]. Bioelectrochemistry, 2019, 127: 125-160.
[45] ZHU J, YE Z, FAN X, et al. A highly sensitive biosensor based on Au NPs/rGO-PAMAM-Fc nanomaterials for detection of cholesterol [J]. Int J Nanomedicine, 2019, 14: 835-884.
[46] KAARIZ D G A,DARABI E,ELAHI S M.Electrochemical sensing of cholesterol based on MWCNTs loaded nanoparticles[J].Theor Appl Phys,2020,14: 339-349.
[47] WU S,HAO J,YANG S,et al.Layer-by-layer self-assembly film of PEI-reduced graphene oxide composites and cholesterol oxidase for ultrasensitive cholesterol biosensing[J].Sens Actuators B,2019,298: 126856-126865.
Research Progress in Electrochemical Methods for Cholesterol Detection
LYU Long-yang, GU Ting-ting, SHANG Shuai, LIN Chang-rui
(School of Chemical Engineering, University of Science and Technology Liaoning, Anshan Liaoning 114051, China)
Abstract: With the improvement of human life quality, measuring cholesterol has become an important research topic. Electrochemical detection of cholesterol has the advantages of high selectivity and high speed. In this paper, the electrochemistry principle and the latest progress in the determination of cholesterol by electrochemical methods in the presence and absence of enzymes were reviewed, and the prospect of electrochemical methods for the determination of cholesterol was also discussed.
Key words:" Cholesterol; Enzymes; Enzyme-free; Electrochemical sensors