二甲双胍降低心房颤动发生风险的研究进展

2023-12-04 04:26:21任瑞凤孙玉芹王华亭
中国现代医生 2023年29期
关键词:动作电位房性心房

任瑞凤,孙玉芹,王华亭

二甲双胍降低心房颤动发生风险的研究进展

任瑞凤1,2,孙玉芹3,王华亭1,2

1.山东大学齐鲁医学院,山东济南 250012;2.济南市中心医院心血管内科,山东济南 250013;3.潍坊医学院临床医学院,山东潍坊 261053

二甲双胍的价格低廉且安全性高,是目前临床上应用较为广泛的经典降糖药物。研究发现,二甲双胍与降低心房颤动的发生率有关,其可能是通过减少糖原和脂质沉积、激活单磷酸腺苷活化蛋白激酶、改善钙稳态、减轻炎症、促进缝隙连接蛋白43的表达、恢复小电导钙激活钾通道电流等,改善左心房的结构重构和电学重构,从而降低心房颤动的发生风险。本文对二甲双胍降低心房颤动发生风险的研究进展进行综述。

二甲双胍;心房颤动;单磷酸腺苷活化蛋白激酶;钙稳态

1998年,英国前瞻性糖尿病研究小组证实,二甲双胍不仅可降低血糖,其对心血管系统也有明确的保护作用[1]。一项Meta分析研究结果显示,二甲双胍可降低心肌梗死和心力衰竭患者的全因病死率[2]。在一项应用二甲双胍治疗糖尿病的随访研究中发现,二甲双胍组患者发生脑卒中的风险比为0.468,明显低于对照组[3]。既往研究认为,二甲双胍通过激活单磷酸腺苷活化蛋白激酶(adenosine monophosphate- activated protein kinase,AMPK)、增加一氧化氮利用度,降低促炎因子表达水平、减少氧化应激和炎症反应、促进脂肪酸氧化和葡萄糖转运、通过糖酵解途径提高腺苷三磷酸(adenosine triphosphate,ATP)水平、维持细胞钙稳态等,发挥保护心脏的作用[4-7]。尽管二甲双胍对心血管系统有益,但其对心律失常的作用机制尚不明确。心房颤动(atrial fibrillation,AF)是临床上最常见的心律失常疾病,研究二甲双胍与AF的关系对其临床诊治具有重要意义。本文综述二甲双胍降低AF发生风险作用机制的研究进展,为二甲双胍的临床应用提供理论依据。

1 二甲双胍降低AF的发生风险

AF是临床上最常见的心律失常疾病,其与脑卒中、外周血管栓塞等发生风险的增加有关。据统计数据估算,全球AF患者总人数为3350万[8]。近年来多项研究结果提示,二甲双胍可降低AF的发生风险。在一项观察性研究中,利用倾向评分匹配法评估服用不同糖尿病药物的患者发生心律失常的风险;结果发现,与未使用二甲双胍的患者相比,二甲双胍单一治疗患者发生心律失常的风险显著降低;与磺脲类药物相比,二甲双胍组患者室性心动过速/心室颤动的发生率减少了34%;与二肽基肽酶4抑制剂单一治疗相比,二甲双胍与AF、心房扑动或其他室上性心律失常和心动过缓的风险显著降低相关,发生率降低约10%;与噻唑烷二酮相比,二甲双胍可显著降低AF、心房扑动或其他室上性心律失常的发生风险,其发生率分别降低14%和9%[9]。在一项队列研究中,将645710例新确诊为2型糖尿病且未使用过降糖药物的患者纳入研究中,平均随访时间为5.4年;结果显示,与安慰剂组相比,二甲双胍组患者的AF发生率显著低于对照组[10]。Ozcan等[11]利用心脏特异性肝激酶B1基因敲除小鼠模型研究二甲双胍和阿司匹林一级预防AF的效果,结果显示,与未处理组小鼠相比,二甲双胍和阿司匹林治疗小鼠的自发性AF发生率显著降低[11]。在2型糖尿病患者的相关研究中发现,二甲双胍与AF的住院风险降低有关,且具有剂量-反应效应[12]。二甲双胍与射频导管消融术后再发房性心律失常风险显著降低独立相关[13]。Lal等[14]通过筛选确定二甲双胍是治疗AF的潜在药物。目前,二甲双胍降低AF发生风险的机制尚不明确。

2 二甲双胍预防AF的潜在有效机制

2.1 减少糖原和脂质沉积

糖尿病是AF的危险因素。胰岛素抵抗和血糖升高可引起心房结构重构和电学重构,进一步引起心房扩张、间质纤维化及心房有效不应期(atrium effective refractory period,AERP)缩短,最终导致AF的发生[15-16]。AF发生时能量需求增加,葡萄糖代谢上调失败,更依赖于脂肪酸代谢,糖原沉积导致心肌细胞明显肥大,使AF持续存在。二甲双胍是临床上治疗糖尿病的经典用药;其在不降低正常血糖的基础上,通过促进肌肉等外周组织摄取葡萄糖、促进糖酵解、抑制糖异生及改善胰岛素抵抗等发挥作用[17-18]对非糖尿病犬进行快速心房起搏后发现,左心耳脂质沉积的增加与AERP的缩短和分散有关[19]。研究发现,二甲双胍可通过AMPK/过氧化物酶体增殖物激活受体(peroxisome proliferator-activated receptor,PPAR)-α/极长链脂酰辅酶A脱氢酶信号传导途径,促进脂肪酸-β氧化,减少脂质沉积,改善心房重构[20]。另有研究表明,二甲双胍可通过缩小心外膜脂肪组织体积,降低患者的术后复发率[21]。综上,二甲双胍减少糖原和脂质沉积,可在一定程度上减缓AF进程。

2.2 改善钙稳态

研究发现,细胞内钙稳态异常可导致AF的易感性增加[22-23]。Harada等[24]在AF犬模型的左心房样本和AF术后患者的右心房组织样本中测定Ca2+的瞬变幅度和细胞收缩能力,评估AMPK的磷酸化水平及AMPK与钙离子转运蛋白的关系;研究发现,AMPK的激活有助于维持L型钙通道电流、Ca2+瞬变幅度、肌质网Ca2+含量和细胞收缩能力。二甲双胍可增加AMPK的表达水平,推测其可能通过AMPK途径维持钙稳态,从而减少AF的发生[19]。

2.3 促进缝隙连接蛋白43(connexin 43,Cx43)的表达

Cx43是心脏连接蛋白的重要成员之一,可介导心肌细胞间的电偶合,参与相邻细胞间的离子交换,从而调控细胞间通讯[25]。研究发现,Cx43在改善细胞内电传导、抑制心律失常中起关键作用,可预防AF的发生[26-27]。研究证实,二甲双胍可激活AMPK[28]。研究表明,在新生大鼠的心肌细胞中,二甲双胍通过激活AMPK,促进Cx43和紧密连接蛋白-1的表达,抑制AERP的缩短,改善AERP的离散度[20]。同时,AMPK磷酸化可通过促进大鼠心肌细胞中ATP敏感钾离子通道(KATP)的开放,抑制细胞间隙通透性,增加Cx43的表达,从而减少房性心律失常的发生[29-30]。

2.4 减少氧化应激和炎症反应

AF的发生与氧化应激和炎症反应密切相关[31]。非糖尿病小鼠AF模型研究发现,二甲双胍可通过抑制还原型烟酰胺腺嘌呤二核苷酸磷酸氧化酶,减少细胞内活性氧的表达,抑制心房中成纤维细胞分化,从而改善心房重构[10,32]。AF涉及炎症过程,心外膜脂肪组织分泌的脂肪因子可诱导炎症反应,促进AF的发生[21]。二甲双胍可影响心外膜脂肪组织的积累、脂肪的生成和脂肪细胞的功能,包括脂肪因子的产生和释放[33]。研究表明,快速心房起搏可促进细胞内活性氧和核因子κB的磷酸化,上调心房和心外膜脂肪组织中白细胞介素-6、肿瘤坏死因子-α和转化生长因子-β1的水平,抑制PPARγ和脂联素的表达,并伴有心房纤维化和脂肪浸润;上述因子的表达在给予二甲双胍后出现逆转,氧化应激和炎症反应减少,从而降低心房纤维化和AF的发生[34]。

2.5 恢复小电导钙激活钾通道(small conductance calcium-activatedpotassium channels,SK通道)电流

SK通道是一类对膜电位变化不敏感,而对细胞内Ca2+浓度变化较为敏感的钾离子通道蛋白,其在心脏中广泛存在,可影响动作电位时程。SK通道在心房肌细胞和起搏细胞中高度表达[35]。SK通道包括SK1(KCNN1基因编码的KCa2.1)、SK2(KCNN2基因编码的KCa2.2)和SK3(KCNN3基因编码的KCa2.3);KCNN2和KCNN3基因与孤立性AF存在关联[36-37]。研究证实,SK2基因敲除小鼠的心房动作电位时程显著延长,SK2、SK3过表达小鼠动作电位时程缩短、放电频率增加,SK通道的过表达可增加AF的易感性,易诱发房性心律失常[38-39]。二甲双胍的长期使用可通过蛋白激酶C/胞外信号调节激酶途径,抑制SK2的下调和SK3的上调[40]。Fu等[41]研究证实,糖尿病大鼠SK2的表达减少,SK3的表达增加,SK总体电流减少,电流-电压关系扭曲,导致动作电位时程延长并出现随后的房性心律失常;经二甲双胍治疗3个月后,SK2的表达增加,SK3的表达减少,SK的总体电流增加,正常的电流-电压关系得以恢复,动作电位时程正常化,从而减少房性心律失常的发生。SK通道参与糖尿病条件下心律失常的进展过程,二甲双胍对心房电生理有潜在益处,其可能成为房性心律失常治疗的新靶点。

2.6 激活AMPK

二甲双胍是已知的AMPK激活剂,可通过酪氨酸蛋白激酶/磷脂酰肌醇3激酶途径激活AMPK,或通过抑制线粒体复合体激活AMPK[7,18];也可通过维持胰岛素/葡萄糖稳态,调控AMPK信号通路。Harada等[24]研究发现,AF相关的代谢应激使心房的收缩功能和Ca2+的处理能力下降;同时,AF能量需求增加可激活AMPK;AMPK磷酸化比例在阵发性AF患者中较高,在持续性AF患者中较低,且AMPK磷酸化活性的降低使AF患者心律失常状态持续存在并出现治疗抵抗。推测AMPK激活可能有助于延缓AF进程,帮助将阵发性AF和持续性AF转复为窦性心律。代谢正常的猪缺血再灌注损伤模型研究发现,酸中毒、腺苷二磷酸的积累和ATP的消耗会引起心脏KATP开放,导致动作电位缩短;二甲双胍可通过激活AMPK,增加ATP浓度,进而抑制KATP的开放[42]。AMPK的磷酸化可增加Cx43的表达,进而减少房性心律失常的发生[30]。综上,无论患者是否存在代谢异常,二甲双胍的临床治疗均可获得明显的心血管益处,AMPK可能是治疗AF的新靶点。

此外,二甲双胍不会增加低血糖风险,可减少因低血糖导致的AF;也可通过调节微RNA-1,改善心脏传导延迟[43-44]。然而,二甲双胍在抗心律失常的同时,可导致心律失常。二甲双胍的使用和维生素B12的缺乏具有显著相关性[45]。二甲双胍可能通过干扰内在因子维生素B12复合物与回肠末端相应受体的结合,阻碍维生素B12的吸收。维生素B12的缺乏可引起或加速心脏去神经等自主神经病变,这与心律失常有关。

3 小结与展望

二甲双胍被列为一线降糖药物,其可控制血糖,亦具有降低AF和其他心律失常疾病发生的作用,但作用机制尚未完全明确。二甲双胍预防AF的有效性值得在糖尿病患者和非糖尿病患者中进行更深入的研究。AMPK是干预AF病程进展的新靶点。未来可着眼于二甲双胍激活AMPK、减少AF发生的具体机制及相关影响因素,并通过进一步的动物和临床研究进行不断探索。

[1] ANON. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group[J]. Lancet, 1998, 352(9131): 854–865.

[2] HAN Y, XIE H, LIU Y, et al. Effect of metformin on all-cause and cardiovascular mortality in patients with coronary artery diseases: A systematic review and an updated Meta-analysis[J]. Cardiovasc Diabetol, 2019, 18(1): 96.

[3] CHENG Y Y, LEU H B, CHEN T J, et al. Metformin- inclusive therapy reduces the risk of stroke in patients with diabetes: A 4-year follow-up study[J]. J Stroke Cerebrovasc Dis, 2014, 23(2): e99–e105.

[4] CHEN X, LI X, ZHANG W, et al. Activation of AMPK inhibits inflammatory response during hypoxia and reoxygenation through modulating JNK-mediated NF-κB pathway[J]. Metabolism, 2018, 83: 256–270.

[5] FEI Q, MA H, ZOU J, et al. Metformin protects against ischaemic myocardial injury by alleviating autophagy- ROS-NLRP3-mediated inflammatory response in macrophages[J]. J Mol Cell Cardiol, 2020, 145: 1–13.

[6] YOUNG L H. AMP-activated protein kinase conducts the ischemic stress response orchestra[J]. Circulation, 2008, 117(6): 832–840.

[7] DIAMANTI-KANDARAKIS E, CHRISTAKOU C D, KANDARAKI E, et al. Metformin: An old medication of new fashion: Evolving new molecular mechanisms and clinical implications in polycystic ovary syndrome[J]. Eur J Endocrinol, 2010, 162(2): 193–212.

[8] MORIN D P, BERNARD M L, MADIAS C, et al. The state of the art: Atrial fibrillation epidemiology, prevention,and treatment[J]. Mayo Clin Proc, 2016, 91(12): 1778–1810.

[9] OSTROPOLETS A, ELIAS P A, REYES M V, et al. Metformin is associated with a lower risk of atrial fibrillation and ventricular arrhythmias compared with sulfonylureas: An observational study[J]. Circ Arrhythm Electrophysiol, 2021, 14(3): e009115.

[10] CHANG S H, WU L S, CHIOU M J, et al. Association of metformin with lower atrial fibrillation risk among patients with type 2 diabetes mellitus: A population- based dynamic cohort and in vitro studies[J]. Cardiovasc Diabetol, 2014, 13: 123.

[11] OZCAN C, DIXIT G, LI Z. Activation of AMP-activated protein kinases prevents atrial fibrillation[J]. J Cardiovasc Transl Res, 2021, 14(3): 492–502.

[12] TSENG C H. Metformin use is associated with a lower incidence of hospitalization for atrial fibrillation in patients with type 2 diabetes mellitus[J]. Front Med (Lausanne), 2021, 7: 592901.

[13] DESHMUKH A, GHANNAM M, LIANG J, et al. Effect of metformin on outcomes of catheter ablation for atrial fibrillation[J]. J Cardiovasc Electrophysiol, 2021, 32(5): 1232–1239.

[14] LAL J C, MAO C, ZHOU Y, et al. Transcriptomics- based network medicine approach identifies metformin as a repurposable drug for atrial fibrillation[J]. Cell Rep Med, 2022, 3(10): 100749.

[15] CARLISLE M A, FUDIM M, DEVORE A D, et al. Heart failure and atrial fibrillation, like fire and fury[J]. JACC Heart Fail, 2019, 7(6): 447–456.

[16] WANG A, GREEN J B, HALPERIN J L, et al. Atrial fibrillation and diabetes mellitus: JACC review topic of the week[J]. J Am Coll Cardiol, 2019, 74(8): 1107–1115.

[17] RENA G, HARDIE D G, PEARSON E R. The mechanisms of action of metformin[J]. Diabetologia, 2017, 60(9): 1577–1585.

[18] FORETZ M, GUIGAS B, BERTRAND L, et al. Metformin: From mechanisms of action to therapies[J]. Cell Metab, 2014, 20(6): 953–966.

[19] BAI F, LIU Y, TU T, et al. Metformin regulates lipid metabolism in a canine model of atrial fibrillation through AMPK/PPAR-α/VLCAD pathway[J]. Lipids Health Dis, 2019, 18(1): 109.

[20] LI J, LI B, BAI F, et al. Metformin therapy confers cardioprotection against the remodeling of gap junction in tachycardia-induced atrial fibrillation dog model[J]. Life Sci, 2020, 254: 117759.

[21] PACKER M. Disease-treatment interactions in the management of patients with obesity and diabetes who have atrial fibrillation: The potential mediating influence of epicardial adipose tissue[J]. Cardiovasc Diabetol, 2019, 18(1): 121.

[22] CHAN Y H, CHANG G J, LAI Y J, et al. Atrial fibrillation and its arrhythmogenesis associated with insulin resistance[J]. Cardiovasc Diabetol, 2019, 18(1): 125.

[23] LIU C, FU H, LI J, et al. Hyperglycemia aggravates atrial interstitial fibrosis, ionic remodeling and vulnerability to atrial fibrillation in diabetic rabbits[J]. Anadolu Kardiyol Derg, 2012, 12(7): 543–550.

[24] HARADA M, TADEVOSYAN A, QI X, et al. Atrial fibrillation activates AMP-dependent protein kinase and its regulation of cellular calcium handling: Potential role in metabolic adaptation and prevention of progression[J]. J Am Coll Cardiol, 2015, 66(1): 47–58.

[25] SÖHL G, WILLECKE K. Gap junctions and the connexin protein family[J]. Cardiovasc Res, 2004, 62(2): 228–232.

[26] BIKOU O, THOMAS D, TRAPPE K, et al. Connexin 43 gene therapy prevents persistent atrial fibrillation in a porcine model[J]. Cardiovasc Res, 2011, 92(2): 218–225.

[27] IGARASHI T, FINET J E, TAKEUCHI A, et al. Connexin gene transfer preserves conduction velocity and prevents atrial fibrillation[J]. Circulation, 2012, 125(2): 216–225.

[28] HE L, WONDISFORD F E. Metformin action: Concentrations matter[J]. Cell Metab, 2015, 21(2): 159–162.

[29] YOSHIDA H, BAO L, KEFALOYIANNI E, et al. AMP-activated protein kinase connects cellular energy metabolism to KATPchannel function[J]. J Mol Cell Cardiol, 2012, 52(2): 410–418.

[30] QIU J, ZHOU S, LIU Q. Phosphorylated AMP-activated protein kinase slows down the atrial fibrillation progression by activating Connexin43[J]. Int J Cardiol, 2016, 208: 56–57.

[31] YEH Y H, KUO C T, CHAN T H, et al. Transforming growth factor-β and oxidative stress mediate tachycardia-induced cellular remodelling in cultured atrial-derived myocytes[J]. Cardiovasc Res, 2011, 91(1): 62–70.

[32] BHATT M P, LIM Y C, KIM Y M, et al. C-peptide activates AMPKα and prevents ROS-mediated mitochondrial fission and endothelial apoptosis in diabetes[J]. Diabetes, 2013, 62(11): 3851–3862.

[33] ZULIAN A, CANCELLO R, GIROLA A, et al. In vitro and in vivo effects of metformin on human adipose tissue adiponectin[J]. Obes Facts, 2011, 4(1): 27–33.

[34] LI B, PO S S, ZHANG B, et al. Metformin regulates adiponectin signalling in epicardial adipose tissue and reduces atrial fibrillation vulnerability[J]. J Cell Mol Med, 2020, 24(14): 7751–7766.

[35] ZHANG X D, THAI P N, LIEU D K, et al. Cardiac small-conductance calcium-activated potassium channels in health and disease[J]. Pflugers Arch, 2021, 473(3): 477–489.

[36] ZHANG X D, LIEU D K, CHIAMVIMONVAT N. Small-conductance Ca2+-activated K+channels and cardiac arrhythmias[J]. Heart Rhythm, 2015, 12(8): 1845–1851.

[37] ELLINOR P T, LUNETTA K L, GLAZER N L, et al. Common variants in KCNN3 are associated with lone atrial fibrillation[J]. Nat Genet, 2010, 42(3): 240–244.

[38] ZHANG Q, TIMOFEYEV V, LU L, et al. Functional roles of a Ca2+-activated K+channel in atrioventricular nodes[J]. Circ Res, 2008, 102(4): 465–471.

[39] ZHANG X D, TIMOFEYEV V, LI N, et al. Critical roles of a small conductance Ca2+-activated K+channel (SK3) in the repolarization process of atrial myocytes[J]. Cardiovasc Res, 2014, 101(2): 317–325.

[40] LIU C H, HUA N, FU X, et al. Metformin regulates atrial SK2 and SK3 expression through inhibiting the PKC/ERK signaling pathway in type 2 diabetic rats[J]. BMC Cardiovasc Disord, 2018, 18(1): 236.

[41] FU X, PAN Y, CAO Q, et al. Metformin restores electrophysiology of small conductance calcium-activated potassium channels in the atrium of GK diabetic rats[J]. BMC Cardiovasc Disord, 2018, 18(1): 63.

[42] LU L, YE S, SCALZO R L, et al. Metformin prevents ischaemic ventricular fibrillation in metabolically normal pigs[J]. Diabetologia, 2017, 60(8): 1550–1558.

[43] HANEFELD M, GANZ X, NOLTE C. Hypoglycemia and cardiac arrhythmia in patients with diabetes mellitus type 2[J]. Herz, 2014, 39(3): 312–319.

[44] LV L, ZHENG N, ZHANG L, et al. Metformin ameliorates cardiac conduction delay by regulating microRNA-1 in mice[J]. Eur J Pharmacol, 2020, 881: 173131.

[45] BELL D S H. Metformin-induced vitamin B12deficiency can cause or worsen distal symmetrical, autonomic and cardiac neuropathy in the patient with diabetes[J]. Diabetes Obes Metab, 2022, 24(8): 1423–1428.

(2022–12–21)

(2022–12–28)

R541

A

10.3969/j.issn.1673-9701.2023.29.033

王华亭,电子信箱:wanghuating65@163.com

猜你喜欢
动作电位房性心房
神与人
房性期前收缩与心房颤动相关性的研究进展
房性期前收缩与缺血性脑卒中相关性的研究进展
心房破冰师
左心房
戏剧之家(2018年35期)2018-02-22 12:32:40
花开在心房
细说动作电位
肉豆蔻挥发油对缺血豚鼠心室肌动作电位及L型钙离子通道的影响
动态心电图对充血性心力衰竭合并房性心律失常的临床分析
稳心复脉汤联合心律平治疗房性心律失常45例