胥腾,黄海辉
综 述
艰难梭菌抗菌药物耐药机制研究进展
胥腾,黄海辉
复旦大学附属华山医院抗生素研究所,国家卫健委抗生素临床药理重点实验室,上海 200040
艰难梭菌(,CD)是医疗机构感染性腹泻最常见的病原之一,并被美国疾病控制和预防中心列为需要紧急和积极应对的耐药威胁。许多耐药基因可在医疗机构、社区和自然环境中不同菌种间转移,随着新耐药机制的产生与获得,CD的抗微生物药物耐药性(antimicrobial resistance,AMR)也在不断演变。CD的耐药机制多种多样,包括化学修饰造成失效、药物靶点的修饰以及药物的主动外排等。既往CD对大环内脂类和喹诺酮类药物耐药性及耐药机制研究较为充分,但对甲硝唑、万古霉素等艰难梭菌感染(infection,CDI)治疗药物的耐药机制研究尚处于起步阶段。近年来研究发现,一些既往CD研究中未考虑的机制如质粒介导的耐药,同样可能在艰难梭菌AMR中发挥重要作用。本文主要综述了CD对甲硝唑、万古霉素和非达霉素等治疗用抗菌药物的耐药机制研究进展,以期为CDI的防治与新抗菌药物和新耐药菌检测试剂盒的研发提供参考。
艰难梭菌;耐药机制;甲硝唑;万古霉素
抗微生物药物耐药(antimicirobial resistance,AMR)是全球公共卫生面临的重要威胁[1]。艰难梭菌(,CD)是一种重要的多重耐药菌,常对大环内酯类、林可酰胺类、四环素类、头孢菌素类和氟喹诺酮类呈多重耐药[2]。该特征使得CD能够在应用广谱抗菌药物导致肠道菌群失调时进行优势生长、产生毒素从而造成艰难梭菌感染(infection,CDI),同时其产芽孢的特性可造成CD在医疗机构内的广泛传播[3]。从2013年开始,CD就被被美国疾病控制和预防中心(Centers for Disease Control and Prevention,CDC)列为最紧迫的公共卫生威胁,每年给美国医疗保健系统造成 10 亿美元的损失[4,5]。至2019年美国CDC仍将其纳入五大抗生素耐药性紧急威胁之一。
当前临床上推荐治疗CDI的抗菌药物有甲硝唑(metronidazole,MTZ)、万古霉素(vancomycin)和非达霉素(fidaxomicin)[6~8]。除此之外,有研究表明替加环素(tigecycline)可有效治疗重度CDI[9],利福昔明(rifaximin)可能有助于预防CDI复发[10]。然而,近年来发现CD对这些药物的敏感性较前下降。来自美国休斯顿的一项研究结果显示CDI患者粪便分离株中26%对万古霉素不敏感,29%对MTZ不敏感;而在肯尼亚内罗毕进行的另外一项研究显示对二者不敏感的分离株比例可高达67%和85%[11]。与此同时,这两种药物治疗失败的报道也并不少见。在国内,艰难梭菌不属于CARSS和CHINET细菌耐药监测网监测病原菌范畴,但某些小规模流行病学研究仍然提示耐药菌株的存在。Meta分析显示2007~2013年间我国临床来源艰难梭菌对利福平的耐药率为18.3%,对四环素的耐药率为46.8%,对甲硝唑和万古霉素则完全敏感[12]。浙江杭州两所三甲医院2012~2015年间腹泻患者粪便l来源的411株艰难梭中有15.6%对甲硝唑耐药, 36.3%对四环素耐药,所有菌株均对万古霉素敏感,且产毒株的多重耐药率(96.4%)远高于非产毒菌株(31.4%)[13]。
艰难梭菌对抗菌药物耐药机制是多种多样的(图1)。细菌对抗菌药物主要的几类耐药机制在艰难梭菌中均比较常见[14]。艰难梭菌可通过改变药物结构造成抗菌药物失效:例如通过转座子Tn4453a和Tn4453b上携带的编码的氯霉素乙酰转移酶,对氯霉素伯羟基进行乙酰化修饰导致药物失效无法与细菌50S核糖体亚基结合;此外某些CD菌株编码 D类β-内酰胺酶可破坏β-内酰胺环使头孢菌素类药物失去活性。艰难梭菌还可对抗菌药物靶点进行修饰:例如操纵子的表达可造成CD肽聚糖前体末端d-Ser修饰,使该位点与万古霉素的亲和力降低。迄今为止,在CD临床株RpoB利福平耐药决定区(rifampin resistance determining region,RRDR)中也已发现十余种耐药突变,可能阻碍利福霉素类药物与靶点RpoB蛋白的结合。艰难梭菌编码不同家族的转运蛋白对抗菌药物进行主动外排:例如CD中编码的MATE家族转运蛋白与氟喹诺酮耐药有关,而ABC家族转运蛋白CprABC介导了CD对抗微生物肽的耐药性。生物膜的形成同样参与了艰难梭菌对药物的耐受:亚抑菌浓度的万古霉素和甲硝唑可增强CD生物膜的形成,同时CD生物膜又可耐受更高浓度的甲硝唑(10~100 mg/L)和万古霉素(20 mg/L)。除此之外,一些既往未考虑的机制如可转移质粒介导的耐药(推测编码N-乙酰胞壁酰-L-丙氨酸酰胺酶的万古霉素耐药质粒pX18-498,甲硝唑耐药质粒pCD-METRO等),同样可能在艰难梭菌AMR中发挥重要作用。本文主要对常用治疗CDI药物(甲硝唑、万古霉素、非达霉素、利福昔明和四环素类等)的耐药机制的研究进展展开综述,以期为临床治疗和新药研发提供参考。
图1 艰难梭菌对临床常用CDI治疗抗菌药物的耐药机制
艰难梭菌的甲硝唑耐药机制包括质粒pCD-METRO的水平转移和内源基因(如铁转运蛋白编码基因等)的突变。万古霉素耐药则可由质粒pX18-498或vanG操纵子介导,当vanG操纵子过表达时D-Ser可取代D-Ala对肽聚糖进行末端修饰。和的突变以及同源基因的突变可导致艰难梭菌对非达霉素敏感性降低。来自抗菌药物选择压力、群体感应信号和基因共同调节艰难梭菌生物膜形成,对甲硝唑和万古霉素的敏感性降低。外排泵同样参与了抗菌药物耐药,例如630Δ菌株中ATP结合盒转运蛋白CD2068的缺失导致其对甲硝唑的IC50上升1.4倍。
MTZ是硝基咪唑类抗生素,自20世纪90年代末以来一直是治疗轻中度CDI的首选药物。然而,自从流行毒株NAP1/027出现后[15],许多国家陆续报道了对MTZ低水平耐药和异质性耐药的菌株,近年来甚至分离到高水平耐药株。对MTZ治疗响应降低的CDI病例报道也越来越多见。
MTZ是一种前体药物,摄入菌体后,在胞内经厌氧菌特有的低氧化还原电位酶促反应还原激活,杂环裂变后形成羟乙基肟酸和乙酰胺[16]。MTZ的杀菌机制尚不明确,可能为活化反应伴随生成的硝基自由基对厌氧菌产生细菌毒性,造成细菌死亡[16]。
CD对MTZ耐药亦可能涉及多种机制,其一是药物还原激活通路的改变。参与药物氧化还原反应的电子传递蛋白如丙酮酸黄多辛氧化还原酶PFOR等在该酶促反应中发挥了重要作用,这类蛋白编码基因的突变参与了耐药形成。Lynch等[17]对一株临床来源的异质性耐药CD分离株CD26A54通过体外诱导获得MTZ稳定耐药株CD26A54-R (MIC=12~ 256 mg/L)。对该耐药株进行基因组和蛋白质组学分析表明,编码的甘油-3-磷酸脱氢酶(Ala229Thr),以及编码的PFOR(Gly423Glu)均存在突变[17]。这些突变很可能使电子传递中断,从而改变菌体能量代谢和胞内氧化还原电位,进而影响MTZ主动转运和胞内还原激活的效率。这些电子传递中断或缺陷的细菌往往表现为小菌落变异(small colony variant,SCV),具有菌落较小、生长缓慢、呼吸减少、菌体分离减弱和对抗生素耐药等特点[18,19]。作者通过扫描电子显微镜观察CD26A54-R菌落同样存在上述特征,符合电子传递功能缺陷的表现。另一项体外研究进一步证实了电子传递蛋白PFOR对CD的MTZ耐药有重要作用,Deshpande等[20]收集了491858,490054和上述CD26A54-R三株存在PFOR突变的MTZ耐药的CD菌株。其中491858和490054菌株的MTZ MIC均为8~16 mg/L,且PFOR存在Ala1018Val突变。数据库比对显示该氨基酸突变位点紧邻蛋白的4Fe-4S辅因子接合部。作者对三株菌分别回补了野生型PFOR编码基因及其启动子,发现回补株的MTZ MIC为4~8 mg/L,显著低于回补前亲本株(<0.05)[20]。然而,由于对CD胞内MTZ激活代谢产物(如还原性亚硝酸盐、NO、乙酰胺)浓度的定量检测均未能成功,因此PFOR突变是否通过阻止MTZ胞内还原激活而导致耐药产生尚未确定。
铁离子作为组成PFOR等电子传递蛋白功能性辅基(如含铁硫簇)的重要元素,在MTZ还原激活途径中发挥重要作用,因此铁代谢/稳态的变化也被认为与CD对MTZ耐药有关。Moura等[21]对一株临床分离RT10型不产毒MTZ耐药株(MIC=32 mg/L)进行了蛋白组学分析,发现在MTZ暴露期间耐药株中铁蛋白缺失。Lynch等[17]对上述CD26A54-R菌株通过蛋白质组学分析发现,MTZ暴露后亚铁离子转运蛋白FeoB1表达水平下降2.2倍,铁化合物ABC转运蛋白底物接合蛋白(CDR20291_1548)表达水平下降1.7倍,提示在耐药菌株中可能存在铁摄取减少。同时这些菌株表现出适应性缺陷,需要在培养基中加入铁以帮助生长。Deshpande等[20]通过敲除DNA错配修复基因构建了一株可高度突变的CD菌株,以研究其体外MTZ诱导耐药的基因演变,该研究中菌株对MTZ的体外耐药性是逐步发展的,MIC从2 mg/L增加到16 mg/L。作者发现截断的亚铁转运蛋白FeoB1是产生低水平抗性的第一步,随后发生的是突变,继而出现(黄嘌呤脱氢酶编码基因)突变和(一种铁硫簇调节因子)突变,导致更高水平的MTZ抗性(MIC=64 mg/L)。在CD中,FeoB1是主要的铁转运蛋白,作者证实在ATCC 700057中的突变降低了菌体内铁含量,使细菌转而利用黄素氧还蛋白(flavodoxin)进行能量代谢,黄素氧还蛋白电子传递效率远低于铁氧环蛋白(ferredoxin)因此可能造成MTZ还原激活速率降低。和基因的突变虽然提高了MTZ的MIC,但在没有发生突变的情况下不能独自介导菌株产生耐药性,相反仅存在缺失的菌株即可表现出低水平的MTZ耐药[20]。然而在体内该机制是否同样有意义仍有争议,因为FeoB1对CD定植和毒力的产生至关重要,CDI小鼠中CD的上调200倍,因而能定植并感染机体的CD不太可能自发筛选富集出FeoB1突变[22]。事实上,在目前已有的临床分离MTZ耐药株中,也没有发现FeoB1突变的菌株。
Olaitan等[23]发现大多数甲硝唑耐药艰难梭菌的耐药表型较为独特,耐药菌仅在含血红素琼脂板上才表现出甲硝唑耐药,而在普通琼脂板上耐药表型消失。研究发现,这些艰难梭菌菌株在基因的启动子中存在T-to-G突变(作者称之为PnimBG),从而导致的组成型转录。沉默或敲除后,这些MTZ耐药株的耐药表型消失。NimB是一种血红素依赖的黄素酶,可降解硝基咪唑类抗菌药物使其丧失抗菌活性。此外,作者发现PnimBG突变的发生似乎与DNA聚合酶的Thr82Ile突变有关,而后者已被证实可介导艰难梭菌对氟喹诺酮类抗菌药耐药。该研究结果表明,对氟喹诺酮耐药的艰难梭菌菌株中可能也有部分菌株同时对甲硝唑的敏感性降低。
Boekhoud等[24]发现质粒也可介导MTZ耐药,他们从MTZ治疗失败的CDI患者粪便标本CD临床分离株中(RT 020)发现了一种约7 kb大小的高拷贝质粒(pCD METRO),携带该质粒使CD对MTZ产生耐药性,将pCD METRO质粒转化敏感株后MIC增加可超过24倍。流调显示该质粒仅存在于MTZ耐药的菌株的中,该研究在585株CD中发现3.8%的菌株携带pCD METRO,携带质粒的菌株来自不同欧洲国家,并属于不同核糖体分型(RT027、010和020)。然而,该质粒介导MTZ抗性的确切机制尚不明确。该质粒含有一个与脆弱拟杆菌基因同源的小假基因(small pseudogene),但该基因缺乏编码催化结构域,在实验室菌株中诱导该基因高表达也不会介导耐药。携带该质粒不会造成菌株的生长速率降低,且耐药菌株在非选择性培养基上重复传代也不会丢失该质粒。该质粒的鸟嘌呤胞嘧啶含量(GC%)为41.6%,与染色质的标准值(约28%~30%)不匹配,表明该质粒是艰难梭菌通过水平转移从另一种未知生物体处获得[24]。
除上述已被验证的耐药机制之外,在暴露于MTZ的耐药菌株中还检测到DNA修复蛋白RecA的差异表达[21,25]。在其他菌种中,具有DNA修复缺陷的突变株对MTZ更敏感[17]。在耐药菌株中也发现了氧化应激相关蛋白的差异表达[23],硫胺素合成酶()和甘油-3-氧化还原酶()基因的突变也与CD的耐药性相关。另一株RT010耐药临床分离株中存在372位突变造成编码蛋白的碳端结构缺失[26]。但是这些基因突变或表达水平变化在MTZ耐药中发挥的作用尚未经实验室研究确认。
艰难梭菌对甲硝唑耐药可能与甲硝唑的临床疗效下降有关。近期研究表明,艰难梭菌对MTZ MIC≥1 μg/mL是基于MTZ的初始治疗方案临床治疗失败的独立预测因素[27]。来自美国与欧洲的两个多中心队列RCT研显示甲硝唑标准方案下CDI初始治疗失败率接近30%,且后续出现CDI复发的概率总体达到23%,两项指标均劣于万古霉素。因此近5年欧洲和美国指南中MTZ地位有所下降,仅推荐用于治疗不能耐受或无法获得万古霉素/非达霉素的轻中度CDI初次发作患者。
最常见的万古霉素耐药机制是基因介导的药物靶点修饰,造成万古霉素与细胞壁亲和力降低[28]。系列基因主要介导d-Lac或d-Ser两种末端修饰。其中,d-Lac修饰(d-Ala-d-Lac)由和基因簇编码,可造成高水平万古霉素抗性;d-Ser修饰(d-Ala-d-Ser)由、和基因簇编码,可造成低水平抗性。目前已在CD中鉴定出多个同源基因,包括和,并且与万古霉素MIC的升高相关[29~31]。这些基因的表达由双组分调节系统控制,该系统包含组氨酸激酶VanS和反应调节子VanR[32]。VanS通常识别万古霉素的存在,导致自身磷酸化并将其磷酸基团转移到VanR,随后,磷酸化的VanR结合到启动子区域以诱导的转录。有研究显示约85%的CD携带基因[31],但与万古霉素耐药的关系仍不明确。Ramírez-Vargas等[30]分析了哥斯达黎加当地医院流行的(NAPCR1型) 38个分离株,发现所有分离株都具有样序列,但其中只有四个分离株万古霉素耐药(MIC= 4 mg/L)。有学者对此做出解释,认为存在其他调控机制使得在敏感株中保持沈默[30,33,34]。有研究在万古霉素耐药CD临床菌株(MIC=4~8 mg/L)以及实验室诱导突变株(MIC=8~ 16 mg/L)中发现,原先沉默的vanG发生组成性表达,原因是这些菌株携带的调控vanG的双组分系统发生了两处突变[31]。该研究对参考菌株R20291进行连续传代构建万古霉素耐药株(MIC=8~16 mg/L),这些耐药株的都发生了突变。然后作者又分析了11株万古霉素MIC升高(4~ 8 mg/L)的临床株,发现它们存在相似的突变,导致组成型高表达[31]。其一是调节蛋白VanR中的Thr115Ala突变使得VanR持续处于DNA结合构象,从而更易诱导vanG的转录。近期研究显示该位点突变与2016年美国佛罗里达州艰难梭菌临床分离株对万古霉素的MIC增加有关[35]。其二是组氨酸激酶VanS保守区域的突变(Arg314Leu),该区域影响了VanS的磷酸酶活性,因此可能增加VanR的磷酸化水平。
除基因外,万古霉素耐药CD中也发现了、、和等同源基因的存在,但这些基因与耐药关系仍不明确。Saldanha等[32]对巴西 7 株万古霉素耐药临床分离CD进行全基因组测序,发现有五株存在至少一个基因。然而,对万古霉素敏感的两个分离株也含有和基因,这表明单独存在基因与万古霉素耐药性无关[32]。未来需要对基因的表达水平以及诱导其表达的上游调控机制进行深入研究,以解释这些基因与万古霉素耐药性的关联。
多药外排泵是存在于细菌细胞膜中的主动转运蛋白,其中一个主要家族是ATP结合盒(ATP- binding cassette,ABC)转运蛋白,水解ATP供能,对简单离子或大分子的溶质如抗菌药物进行转运外排[36]。已有研究在几种梭状芽孢杆菌中证实转运蛋白是造成多药耐药的主要原因[37,38]。在CD中,阳离子抗菌肽(cathelicidin antimicrobial peptide,CAMP)可诱导ABC转运蛋白操纵子高表达,从而降低各种 CAMP的有效性[39]。Ngernsombat等[40]发现并验证了多药外排泵ABC转运蛋白CD2068。作者参考 CD630菌株的基因组分析确定CD2068与和[37,38]中的其他两个已知 ABC转运蛋白具有高度同源性。在暴露于万古霉素 (0.25 mg/L)后基因表达水平显著增加。在大肠埃希菌中过表达CD2068使万古霉素对大肠埃希菌的半数最大抑制浓度(half maximal inhibitory concentration,IC50)升高2.6倍。然而,在敏感模式株CD630Δ中敲除、回补,未观察到万古霉素IC50的显著差异。CD2068造成CD对多药耐药性能力减弱的原因尚不清楚,但作者提出了几种假设,如CD敏感株中CD2068的表达水平较低;其他ABC转运蛋白的代偿;和/或其他机制介导某些抗生素耐药。CD630基因组中共有243处基因经预测编码ABC转运蛋白[41],因此需要进行更多的研究来确定CD2068或其他转运蛋白在CD对万古霉素耐药中的作用及机制。
细胞壁蛋白66()基因编码艰难梭菌的细胞表面抗原,既往研究显示Cwp66在细胞粘附中起重要作用。Zhou等[42]发现Cwp66编码基因缺失的艰难梭菌菌株与野生株相比,对克林霉素、氨苄青霉素和红霉素更加敏感,但对万古霉素和甲硝唑的敏感性降低。但突变造成敏感性降低的具体机制尚不明确。
生物膜可作为物理屏障抑制宿主免疫反应并阻止足够浓度的抗菌药物到达感染部位,与多种病原菌的耐药性、耐受性及反复感染有关[43~45]。目前有两项研究表明CD生物膜的形成与万古霉素敏感性降低有关[46,47]。Ðapa等[46]测定了两株CD (CD630和R20291)的生物膜生长,发现在暴露于20 mg/L万古霉素(100倍MIC)后,与浮游CD相比,一日和三日龄生物膜中的CD菌株存活率分别升高5倍和12倍。Tijerina-Rodriguez 等[47]研究发现与浮游细菌相比,生物膜中CD的万古霉素 MIC 升高100倍。尽管生物膜已被证明与万古霉素MIC的增加和CDI复发有关,但CD生物膜的形成是多因素的,涉及细胞壁表面因子、运动纤毛、芽孢生成和群体感应等多种机制,目前的研究还不能明确地将任何一种机制与万古霉素耐药联系起来。
与MTZ耐药相似,质粒介导的水平转移同样可造成CD的万古霉素耐药。最近有研究报道来自万古霉素治疗无效患者的分离株中存在由质粒介导的万古霉素敏感性降低(MIC=2 mg/L)[48]。该质粒pX18-498是一个具有51个ORFs的大型质粒,包括一个推测编码N-乙酰胞壁酰-l-丙氨酸氨基酶(一种肽聚糖重塑酶)的基因。该酶对于以细胞壁为靶点的抗菌药物耐药性的产生至关重要,将带有该酰胺酶编码基因的pX18-498质粒转化入CD可导致细菌的渗透脆性降低。此外,感染携带pX18-498的CD菌株的小鼠比感染缺乏该质粒的同基因背景菌株的小鼠疾病程度更加严重。作者认为pX18-498对耐药机制的影响,以及该质粒与细菌染色质基因组之间是否存在相互作用仍需要进一步研究。
考虑到万古霉素耐药质粒pX18-498在非产毒株中也有携带,且艰难梭菌可在人体肠道内定植,在1岁以下幼儿肠道中定植概率达70%,而在成人肠道中概率在2%~15%,因此尽早识别可能的带菌者,通过PCR等手段筛查是否携带pX18-498耐药质粒,或许能够对万古霉素耐药的艰难梭菌及其造成的感染进行早识别、早治疗。
窄谱抗菌药物非达霉素与细菌RNA聚合酶(RNA polymerase,RNAP)的夹型结构域结合,抑制DNA转录的起始步骤[49]。自2011年起,美国食品药品监督管理局批准非达霉素用于治疗CDI。非达霉素耐药的CD (MIC=16 μg/mL)是从一名接受非达霉素治疗的 rCDI 患者的粪便标本中分离得到的[50]。非达霉素耐药性源于RNAP结合位点的突变,包括RpoB (Gln1074Lys,Val1143Asp、Gly、Phe)和RpoC (Gln781Arg,Asp1127Glu,Asp237Tyr)等多种突变[51,52]。其中,Val1143Asp (MIC>64 mg/L)和Val1143Gly (MIC=16 mg/L)也存在于非达霉素耐药的临床分离CD菌株中[52,53]。RpoB的Val1143Asp突变会影响CD的适应性和毒力[53]。Val1143Asp、Val1143Gly突变的实验室菌株与其亲本菌株R20291相比,整体生长变缓、竞争适应性下降且毒素A和B的产生均减少,在CDI 金黄地鼠模型中其毒力也降低。研究人员对这些 RNAP存在突变的耐药株的临床意义进行了分析,认为目前尚不清楚这批耐药株是否能在治疗浓度的非达霉素中存活(据报道非达霉素的粪便治疗浓度可达1396 ± 1019 μg/g)[54]。此外,由于这类耐药突变伴随着适应性降低,且非达霉素的窄谱活性对肠道微生物群影响较小[55],因此如果在治疗过程中出现耐药突变,共生的多种肠道微生物群可能有助于减轻突变带来的影响。体外诱导的非达霉素耐药突变株(MIC=16 mg/L)的基因存在移码突变,是(多重抗生素抗性调节因子)的同源基因,但要确定该突变在非达霉素抗性中所起的作用仍需要实验室研究验证[56]。
CDI的替代疗法包括利福霉素类的利福昔明以及四环素类的替加环素。利福昔明抑制细菌RNA 聚合酶,并可作为万古霉素治疗rCDI后的序贯治疗。细菌RNA聚合酶β亚基RpoB突变是产生利福霉素抗性的主要机制[2]。这些突变会破坏利福霉素和RpoB的直接相互作用或改变RpoB上的利福霉素结合口袋(rifamycin-binding pocket)结构。已发现CD中存在多处可造成耐药的RpoB突变,包括Ser488Tyr,Asp492Tyr,His502Asn/Tyr,Arg505Lys,Ser550Phe/Tyr[2]。与其他菌株不同(例如脑膜炎奈瑟球菌和结核分枝杆菌),RpoB突变导致CD对利福霉素产生耐药性的同时不会产生体外和体内适应性代价[53]。CD对利福霉素的耐药性发展迅速,有研究显示甚至在利福昔明治疗CDI期间就可能出现耐药,导致临床治疗失败。在一个病例中,CD菌株(RT056)在利福昔明治疗3天内产生了耐药性,MIC从0.002 mg/L增加到32 mg/L以上[57]。此外,对利福昔明耐药的C D在医疗机构内也很常见(耐药率为29.1%~48.9%),这可能会增加该药物治疗CDI失败的风险[58]。由于持续使用利福霉素较易诱导艰难梭菌产生耐药突变的特性,目前无论国内还是欧美地区指南均不推荐该类药物用作初发CDI的一、二线治疗,仅用于在接近治疗终点时短时间内给药以减少CDI多次复发的可能[59,60]。
四环素类是靶向细菌30S核糖体的广谱抗菌药物,可阻止氨基酰-tRNA与mRNA结合从而抑制蛋白质翻译[61]。与利福昔明相比,CD对替加环素的耐药率较低。最近的一项Meta分析表明,20%的分离自人类标本的CD菌株对四环素具耐药性[62]。CD通过转座子(例如Tn916、Tn5397和Tn4453)携带的各种基因(例如和)编码的核糖体保护蛋白即延伸因子(elongationfactor)[63],介导四环素类药物耐药性的产生。研究发现在欧洲和北美地区,是CD中最常见的四环素耐药决定基因[64]。但由于替加环素对核糖体的亲和力高于传统四环素药物,因此它对携带的菌株仍具有活性。对替加环素的高水平耐药性由四环素类破坏酶基因即编码,它可以通过酶促反应灭活替加环素[63]。最近发现的的同源基因出现在家畜和人类标本CD分离株中的可移动元件上,这也提示替加环素耐药性可在环境、社区与人群间相互传播[63]。
新型抗菌药物的研发是应对耐药菌感染的重要手段。目前有五种治疗CDI的抗菌新药物已进入临床研究阶段。利地利唑(ridinilazole)是新型的苯并咪唑(bis-benzimidazole)类抗菌药,作用机制并未未完全阐明,可抑制艰难梭菌二分裂和毒素A、B的产生[65]。II期临床试验结果显示利地利唑有效性非劣效于万古霉素,且使用利地利唑治疗CDI组患者的肠道菌群α多样性变化更小(<0.0001),微生物群组成也能更快恢复到治疗前的水平[66]。目前该药正处于III期临床研究阶段。MGB-BP-3是一种基于奎宁- 远霉素(quinoline–distamycin-based)的人工合成抗菌新药,作用机制并未完全阐明,可与艰难梭菌DNA小沟结合抑制基因转录,对NAP1/027株具强效杀菌作用,体外药敏MIC为0.25μg/mL[67]。目前该药正处于II期临床试验阶段。Ibezapolstat是一种二氯苄基嘌呤衍生物(dichlorobenzyl purine derivative),为细菌DNA聚合酶III PolC抑制剂,体外药效学研究显示其对艰难梭菌的MIC在1~ 8 µg/mL之间[68]。CRS3123是一种苯并吡喃衍生物,作为甲硫氨酰- tRNA合酶抑制剂。临床前研究显示CRS3123能够抑制多种CD临床分离株的毒素A、B产生,快速缓解CDI症状,抑制芽孢形成[69]。该药物目前已进入II期临床试验。DNV3837是一种喹诺酮类与恶唑烷酮杂化后的化合物,体外药效学研究显示该药 MIC为0.25 µg/mL[70]。与上述其他新药不同,DNV3837为静脉注射给药,给药后血酯酶可使 DNV3837去磷酸化为活性形式 DNV3681,并在肠道组织中富集。因此DNV3837可能为不能耐受口服药物的CDI患者提供一种替代选择[71]。该药物目前亦正处于II期临床试验阶段。
艰难梭菌感染仍然是医疗卫生系统的严重威胁和负担,MDR菌株普遍存在,临床常用治疗药物如甲硝唑和万古霉素对CDI的疗效下降,替代选择如利福霉素类药物更易导致CD耐药性的快速产生。除传统机制如药物转化、靶位改变、主动外排、生物膜形成等可共同参与耐药形成外,耐药质粒亦可介导艰难梭菌的甲硝唑或万古霉素耐药。由于艰难梭菌为产芽孢的厌氧革兰阳性菌,以往用于需氧菌耐药机制研究的分子生物学技术很多不适用于艰难梭菌耐药研究,但是近几年随着CRISPR-Cas技术的发展应用,推出了多种基因编辑质粒并可商业获得,有助于对艰难梭菌耐药机制特别是对甲硝唑和万古霉素等治疗用药物的耐药机制进行深入研究。随着对耐药性变迁和耐药机制的更好了解,将为抗菌药物合理应用,遏制耐药菌的产生和播散、新抗菌药以及新耐药菌快速检测试剂盒的研发提供理论基础。
[1] Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis., 2022, 399(10325): 629–655.
[2] Peng Z, Jin DZ, Kim HB, Stratton CW, Wu B, Tang YW, Sun XM. Update on antimicrobial resistance in clostridium difficile: resistance mechanisms and antimicrobial susceptibility testing., 2017, 55(7): 1998–2008.
[3] Owens RC, Donskey CJ, Gaynes RP, Loo VG, Muto CA. Antimicrobial-associated risk factors for clostridium difficile infection., 2008, 46 Suppl 1: S19–S31.
[4] Khoruts A, Staley C, Sadowsky MJ. Faecal microbiota transplantation for clostridioides difficile: mechanisms and pharmacology., 2021, 18(1): 67–80.
[5] Guh AY, Mu Y, Winston LG, Johnston H, Olson D, Farley MM, Wilson LE, Holzbauer SM, Phipps EC, Dumyati GK, Beldavs ZG, Kainer MA, Karlsson M, Gerding DN, McDonald LC, Emerging Infections Program Clostridioides difficile Infection Working Group. Trends in U.S. burden of clostridioides difficile infection and outcomes., 2020, 382(14): 1320–1330.
[6] Johnson S, Lavergne V, Skinner AM, Gonzales-Luna AJ, Garey KW, Kelly CP, Wilcox MH. Clinical practice guideline by the infectious diseases society of america (IDSA) and society for healthcare epidemiology of america (SHEA): 2021 focused update guidelines on management of clostridioides difficile infection in adults., 2021, 73(5): e1029–e1044.
[7] van Prehn J, Reigadas E, Vogelzang EH, Bouza E, Hristea A, Guery B, Krutova M, Norén T, Allerberger F, Coia JE, Goorhuis A, van Rossen TM, Ooijevaar RE, Burns K, Scharvik Olesen BR, Tschudin-Sutter S, Wilcox MH, Vehreschild MJGT, Fitzpatrick F, Kuijper EJ, Guideline Committee of the European Study Group on Clostridioides difficile. European society of clinical microbiology and infectious diseases: 2021 update on the treatment guidance document for clostridioides difficile infection in adults., 2021, 27 Suppl 2: S1–S21.
[8] Petrosillo N, Granata G, Cataldo MA. Novel antimicrobials for the treatment of clostridium difficile infection., 2018, 5: 96.
[9] Kechagias KS, Chorepsima S, Triarides NA, Falagas ME. Tigecycline for the treatment of patients with clostridium difficile infection: an update of the clinical evidence., 2020, 39(6): 1053–1058.
[10] Major G, Bradshaw L, Boota N, Sprange K, Diggle M, Montgomery A, Jawhari A, Spiller RC, RAPID Collaboration Group. Follow-on rifaximin for the prevention of recurrence following standard treatment of infection with clostridium difficile (RAPID): a randomised placebo controlled trial., 2019, 68(7): 1224–1231.
[11] Ondo WG, Vuong KD, Wang Q. Restless legs syndrome in monozygotic twins: clinical correlates., 2000, 55(9): 1404–1406.
[12] Tang CJ, Cui LB, Xu YQ, Xie L, Sun PF, Liu CC, Xia WY, Liu GY. The incidence and drug resistance of Clostridium difficile infection in Mainland China: a systematic review and meta-analysis., 2016, 6: 37865.
[13] Jin DZ, Luo Y, Huang C, Cai J, Ye JL, Zheng Y, Wang LQ, Zhao P, Liu AB, Fang WJ, Wang XJ, Xia SC, Jiang JM, Tang YW. Molecular epidemiology of clostridium difficile infection in hospitalized patients in eastern china., 2017, 55(3): 801–810.
[14] Gao Q, Huang HH. Update on antimicrobial resistance in clostridium difficile., 2015, 37(5): 458–464.高琼, 黄海辉. 艰难梭菌耐药性及耐药机制研究进展. 遗传, 2015, 37(5): 458–464.
[15] Pépin J, Valiquette L, Gagnon S, Routhier S, Brazeau I. Outcomes of clostridium difficile-associated disease treated with metronidazole or vancomycin before and after the emergence of NAP1/027., 2007, 102(12): 2781–2788.
[16] Dingsdag SA, Hunter N. Metronidazole: an update on metabolism, structure-cytotoxicity and resistance mechanisms., 2018, 73(2): 265–279.
[17] Lynch T, Chong P, Zhang J, Hizon R, Du T, Graham MR, Beniac DR, Booth TF, Kibsey P, Miller M, Gravel D, Mulvey MR, Canadian Nosocomial Infection Surveillance Program (CNISP). Characterization of a stable, metronidazole-resistant clostridium difficile clinical isolate., 2013, 8(1): e53757.
[18] Wellinghausen N, Chatterjee I, Berger A, Niederfuehr A, Proctor RA, Kahl BC. Characterization of clinical enterococcus faecalis small-colony variants., 2009, 47(9): 2802–2811.
[19] Kahl BC, Becker K, Löffler B. Clinical significance and pathogenesis of staphylococcal small colony variants in persistent infections., 2016, 29(2): 401–427.
[20] Deshpande A, Wu XQ, Huo WW, Palmer KL, Hurdle JG. Chromosomal resistance to metronidazole in clostridioides difficile can be mediated by epistasis between iron homeostasis and oxidoreductases., 2020, 64(8): e00415–e00420.
[21] Moura I, Monot M, Tani C, Spigaglia P, Barbanti F, Norais N, Dupuy B, Bouza E, Mastrantonio P. Multidisciplinary analysis of a nontoxigenic clostridium difficile strain with stable resistance to metronidazole., 2014, 58(8): 4957–4960.
[22] Arcay RM, Suárez-Bode L, López-Causapé C, Oliver A, Mena A. Emergence of high-level and stable metronidazole resistance in Clostridioides difficile., 2020, 55(1): 105830.
[23] Olaitan AO, Dureja C, Youngblom MA, Topf MA, Shen WJ, Gonzales-Luna AJ, Deshpande A, Hevener KE, Freeman J, Wilcox MH, Palmer KL, Garey KW, Pepperell CS, Hurdle JG. Decoding a cryptic mechanism of metronidazole resistance among globally disseminated fluoroquinolone-resistant clostridioides difficile., 2023, 14(1): 4130.
[24] Boekhoud IM, Hornung BVH, Sevilla E, Harmanus C, Bos-Sanders IMJG, Terveer EM, Bolea R, Corver J, Kuijper EJ, Smits WK. Plasmid-mediated metronidazole resistance in clostridioides difficile., 2020, 11(1): 598.
[25] Chong PM, Lynch T, Mccorrister S, Kibsey P, Miller M, Gravel D, Westmacott GR, Mulvey MR, Canadian Nosocomial Infection Surveillance Program (CNISP). Proteomic analysis of a NAP1 clostridium difficile clinical isolate resistant to metronidazole., 2014, 9(1): e82622.
[26] Boekhoud IM, Sidorov I, Nooij S, Harmanus C, Bos-Sanders IMJG, Viprey V, Spittal W, Clark E, Davies K, Freeman J, Kuijper EJ, Smits WK, COMBACTE-CDI Consortium. Haem is crucial for medium-dependent metronidazole resistance in clinical isolates of Clostridioides difficile., 2021, 76(7): 1731–1740.
[27] Gonzales-Luna AJ, Olaitan AO, Shen WJ, Deshpande A, Carlson TJ, Dotson KM, Lancaster C, Begum K, Alam MJ, Hurdle JG, Garey KW. Reduced susceptibility to metronidazole is associated with initial clinical failure in clostridioides difficile infection., 2021, 8(8): ofab365.
[28] Zhao HL, Nickle DC, Zeng Z, Law PYT, Wilcox MH, Chen L, Peng Y, Meng J, Deng ZQ, Albright A, Zhong HZ, Xu X, Zhu SD, Shen JD, Blanchard RL, Dorr MB, Shaw PM, Li JH. Global landscape of clostridioides difficile phylogeography, antibiotic susceptibility, and toxin polymorphisms by post-hoc whole-genome sequencing from the MODIFY I/II studies., 2021, 10(2): 853–870.
[29] Ahmed MO, Baptiste KE. Vancomycin-Resistant Enterococci: A review of antimicrobial resistance mechanisms and perspectives of human and animal health., 2018, 24(5): 590–606.
[30] Ramírez-Vargas G, Quesada-Gómez C, Acuña-Amador L, López-Ureña D, Murillo T, Del Mar Gamboa-Coronado M, Chaves-Olarte E, Thomson N, Rodríguez-Cavallini E, Rodríguez C. A clostridium difficile lineage endemic to costa rican hospitals is multidrug resistant by acquisition of chromosomal mutations and novel mobile genetic elements., 2017, 61(4): e02054–16.
[31] Shen WJ, Deshpande A, Hevener KE, Endres BT, Garey KW, Palmer KL, Hurdle JG. Constitutive expression of the crypticoperon promotes vancomycin resistance in clostridioides difficile clinical isolates., 2020, 75(4): 859–867.
[32] Saldanha GZ, Pires RN, Rauber AP, De Lima-Morales D, Falci DR, Caierão J, Pasqualotto AC, Martins AF. Genetic relatedness, virulence factors and antimicrobial resistance of C. difficile strains from hospitalized patients in a multicentric study in Brazil., 2020, 22: 117–121.
[33] Depardieu F, Mejean V, Courvalin P. Competition between VanU(G) repressor and VanR(G) activator leads to rheostatic control of vanG vancomycin resistance operon expression., 2015, 11(4): e1005170.
[34] Sebaihia M, Wren BW, Mullany P, Fairweather NF, Minton N, Stabler R, Thomson NR, Roberts AP, Cerdeño-Tárraga AM, Wang HM, Holden MTG, Wright A, Churcher C, Quail MA, Baker S, Bason N, Brooks K, Chillingworth T, Cronin A, Davis P, Dowd L, Fraser A, Feltwell T, Hance Z, Holroyd S, Jagels K, Moule S, Mungall K, Price C, Rabbinowitsch E, Sharp S, Simmonds M, Stevens K, Unwin L, Whithead S, Dupuy B, Dougan G, Barrell B, Parkhill J. The multidrug-resistant human pathogen clostridium difficile has a highly mobile, mosaic genome., 2006, 38(7): 779–786.
[35] Wickramage I, Peng Z, Chakraborty S, Harmanus C, Kuijper EJ, Alrabaa S, Smits WK, Sun XM. The vanRCd mutation 343A>G, resulting in a Thr115Ala substitution, is associated with an elevated minimum inhibitory concentration (MIC) of vancomycin in clostridioides difficile clinical isolates from florida., 2023, 11(3): e0377722.
[36] Liu XD. ABC family transporters., 2019, 1141: 13–100.
[37] Rafii F, Park M. Detection and characterization of an ABC transporter in clostridium hathewayi., 2008, 190(4): 417–426.
[38] Rafii F, Park M, Carman RJ. Characterization of an ATP-binding cassette from clostridium perfringens with homology to an ABC transporter from clostridium hathewayi., 2009, 15(4): 116–121.
[39] Mcbride SM, Sonenshein AL. The dlt operon confers resistance to cationic antimicrobial peptides in clostridium difficile., 2011, 157(Pt 5): 1457– 1465.
[40] Ngernsombat C, Sreesai S, Harnvoravongchai P, Chankhamhaengdecha S, Janvilisri T. CD2068 potentially mediates multidrug efflux in clostridium difficile., 2017, 7(1): 9982.
[41] Dannheim H, Riedel T, Neumann-Schaal M, Bunk B, Schober I, Spröer C, Chibani CM, Gronow S, Liesegang H, Overmann J, Schomburg D. Manual curation and reannotation of the genomes of Clostridium difficile 630Δerm and C. difficile 630., 2017, 66(3): 286–293.
[42] Zhou QS, Rao FQ, Chen ZH, Cheng YM, Zhang QF, Zhang J, Guan ZZ, He Y, Yu WF, Cui GZ, Qi XL, Hong W. The cwp66 gene affects cell adhesion, stress tolerance, and antibiotic resistance in clostridioides difficile.,2022, 10(2): e0270421.
[43] Yan J, Bassler BL. Surviving as a community: antibiotic tolerance and persistence in bacterial biofilms., 2019, 26(1): 15–21.
[44] Jarrad AM, Blaskovich MAT, Prasetyoputri A, Karoli T, Hansford KA, Cooper MA. Detection and investigation of eagle effect resistance to vancomycin in clostridium difficile with an ATP-Bioluminescence assay., 2018, 9: 1420.
[45] Wu XQ, Cherian PT, Lee RE, Hurdle JG. The membrane as a target for controlling hypervirulent clostridium difficile infections., 2013, 68(4): 806–815.
[46] Ðapa T, Leuzzi R, Ng YK, Baban ST, Adamo R, Kuehne SA, Scarselli M, Minton NP, Serruto D, Unnikrishnan M. Multiple factors modulate biofilm formation by the anaerobic pathogen clostridium difficile., 2013, 195(3): 545–555.
[47] Tijerina-Rodríguez L, Villarreal-Treviño L, Baines SD, Morfín-Otero R, Camacho-Ortíz A, Flores-Treviño S, Maldonado-Garza H, Rodríguez-Noriega E, Garza- González E. High sporulation and overexpression of virulence factors in biofilms and reduced susceptibility to vancomycin and linezolid in recurrent clostridium [clostridioides] difficile infection isolates., 2019, 14(7): e0220671.
[48] Pu M, Cho JM, Cunningham SA, Behera GK, Becker S, Amjad T, Greenwood-Quaintance KE, Mendes-Soares H, Jones-Hall Y, Jeraldo PR, Chen J, Dunny G, Patel R, Kashyap PC. Plasmid acquisition alters vancomycin susceptibility in clostridioides difficile., 2021, 160(3): 941–945.e8.
[49] Lin W, Das K, Degen D, Mazumder A, Duchi D, Wang DY, Ebright YW, Ebright RY, Sineva E, Gigliotti M, Srivastava A, Mandal S, Jiang Y, Liu Y, Yin RH, Zhang ZN, Eng ET, Thomas D, Donadio S, Zhang HB, Zhang CS, Kapanidis AN, Ebright RH. Structural basis of transcription inhibition by fidaxomicin (lipiarmycin A3)., 2018, 70(1): 60–71.e15.
[50] Goldstein EJC, Citron DM, Sears P, Babakhani F, Sambol SP, Gerding DN. Comparative susceptibilities to fidaxomicin (OPT-80) of isolates collected at baseline, recurrence, and failure from patients in two phase III trials of fidaxomicin against clostridium difficile infection., 2011, 55(11): 5194–5199.
[51] Babakhani F, Gomez A, Robert N, Sears P. Killing kinetics of fidaxomicin and its major metabolite, OP-1118, against clostridium difficile., 2011, 60(Pt 8): 1213–1217.
[52] Schwanbeck J, Riedel T, Laukien F, Schober I, Oehmig I, Zimmermann O, Vermann J, Groß U, Zautner A E, Bohne W. Characterization of a clinical clostridioides difficile isolate with markedly reduced fidaxomicin susceptibility and a V1143D mutation in rpoB., 2019, 74(1): 6–10.
[53] Kuehne SA, Dempster AW, Collery MM, Joshi N, Jowett J, Kelly ML, Cave R, Longshaw CM, Minton NP. Characterization of the impact of rpoB mutations on the in vitro and in vivo competitive fitness of clostridium difficile and susceptibility to fidaxomicin., 2018, 73(4): 973–980.
[54] Louie TJ, Miller MA, Mullane KM, Weiss K, Lentnek A, Golan Y, Gorbach S, Sears P, Shue YK, OPT-80-003 Clinical Study Group. Fidaxomicin versus vancomycin for clostridium difficile infection., 2011, 364(5): 422–431.
[55] Finegold SM, Molitoris D, Vaisanen ML, Song YL, Liu CX, Bolaños M. In vitro activities of OPT-80 and comparator drugs against intestinal bacteria., 2004, 48(12): 4898–4902.
[56] Leeds JA, Sachdeva M, Mullin S, Barnes SW, Ruzin A. In vitro selection, via serial passage, of clostridium difficile mutants with reduced susceptibility to fidaxomicin or vancomycin., 2014, 69(1): 41–44.
[57] Carman RJ, Boone JH, Grover H, Wickham KN, Chen L. In vivo selection of rifamycin-resistant clostridium difficile during rifaximin therapy., 2012, 56(11): 6019–6020.
[58] Ng QX, Loke W, Foo NX, Mo Y, Yeo WS, Soh AYS. A systematic review of the use of rifaximin for clostridium difficile infections., 2019, 55: 35–39.
[59] Beauduy C, Macdougall C. Update on management of clostridium difficile infection., 2013, 48(s1): S7–S13.
[60] 程敬伟, 刘文恩, 马小军, 肖盟, 张丽, 张莉萍, 赵建宏, 卓超. 中国成人艰难梭菌感染诊断和治疗专家共识. 协和医学杂志, 2017, 8(Z1): 131–138.
[61] Baines SD, Wilcox MH. Antimicrobial resistance and reduced susceptibility in clostridium difficile: potential consequences for induction, treatment, and recurrence of c. difficile infection., 2015, 4(3): 267–298.
[62] Sholeh M, Krutova M, Forouzesh M, Mironov S, Sadeghifard N, Molaeipour L, Maleki A, Kouhsari E. Antimicrobial resistance in clostridioides (clostridium) difficile derived from humans: a systematic review and meta-analysis., 2020, 9(1): 158.
[63] Gasparrini AJ, Markley JL, Kumar H, Wang B, Fang LT, Irum S, Symister CT, Wallace M, Burnham CAD, Andleeb S, Tolia NH, Wencewicz TA, Dantas G. Tetracycline- inactivating enzymes from environmental, human commensal, and pathogenic bacteria cause broad-spectrum tetracycline resistance., 2020, 3(1): 241.
[64] Dingle KE, Didelot X, Quan TP, Eyre DW, Stoesser N, Marwick CA, Coia J, Brown D, Buchanan S, Ijaz UZ, Goswami C, Douce G, Fawley WN, Wilcox MH, Peto TEA, Walker AS , Crook DW. A role for tetracycline selection in recent evolution of agriculture- associated clostridium difficile PCR ribotype 078., 2019, 10(2): e02790–18.
[65] Collins DA, Riley TV. Ridinilazole: a novel, narrow- spectrum antimicrobial agent targeting Clostridium (Clostridioides) difficile., 2022, 75(3): 526–536.
[66] Thorpe CM, Kane AV, Chang J, Tai A, Vickers RJ, Snydman DR. Enhanced preservation of the human intestinal microbiota by ridinilazole, a novel clostridium difficile-targeting antibacterial, compared to vancomycin., 2018, 13(8): e0199810.
[67] Hind C, Clifford M, Woolley C, Harmer J, McGee LMC, Tyson-Hirst I, Tait HJ, Brooke DP, Dancer SJ, Hunter IS, Suckling CJ, Beveridge R, Parkinson JA, Sutton JM, Scott FJ. Insights into the spectrum of activity and mechanism of action of MGB-BP-3., 2022, 8(12): 2552–2563.
[68] Murray B, Wolfe C, Marra A, Pillar C, Shinabarger D. In vitro activity of the novel antibacterial agent ibezapolstat (ACX-362E) against clostridioides difficile., 2020, 75(8): 2149–2155.
[69] Alshrari AS, Hudu SA, Elmigdadi F, Imran M. The urgent threat of clostridioides difficile infection: a glimpse of the drugs of the future, with related patents and prospects., 2023, 11(2): 426.
[70] Kullar R, Tran MCN, Goldstein EJC. Investigational treatment agents for recurrent clostridioides difficile infection (rCDI)., 2020, 12: 371–384.
[71] Butler MS, Gigante V, Sati H, Paulin S, Al-Sulaiman L, Rex JH, Fernandes P, Arias CA, Paul M, Thwaites GE, Czaplewski L, Alm RA, Lienhardt C, Spigelman M, Silver LL, Ohmagari N, Kozlov R, Harbarth S, Beyer P. Analysis of the clinical pipeline of treatments for drug-resistant bacterial infections: despite progress, more action is needed., 2022, 66(3): e0199121.
Progress on mechanisms of antibiotic resistance in
Teng Xu, Haihui Huang
(CD) is one of the most common pathogens causing health-care-associated infectious diarrhea and is listed by the U.S. Centers for Disease Control and Prevention as an urgent antibiotic resistance (AR) threat. Many resistance genes can be transferred between different CD strains present in the clinical setting, community, and environment. The antimicrobial resistance (AMR) of CD continues to evolve with the emergence and acquisition of new drug resistance mechanisms.CD has developed diverse drug resistance mechanisms, such as drug alteration, modification of the target site, and extrusion of drugs via efflux pumps. Researches have provided comprehensive knowledge about resistance mechanisms of macrolides and quinolonesin CD. However, the mechanisms of resistance for metronidazole, vancomycin, and other therapeutic antibiotics againstinfection (CDI) are only beginning to be elucidated. Some previously unfound mechanisms, such as plasmid-mediated drug resistance in CD, may also play an important role. In this review, we summarize the research progress on drug resistance mechanisms of CD with antimicrobial drugs already used clinically, such as metronidazole, vancomycin, and fidaxomicin, thereby providing the references for the clinical treatment and prevention of CDI, as well as the development of new antibacterial drugs and detection kits for drug resistant bacteria.
clostridioides difficile; resistance mechanism; metronidazole; vancomycin; fidaxomicin
2023-08-18;
2023-10-27;
2023-11-03
上海市自然科学基金(编号:21ZR1410800) [Supported by the Natural Science Foundation of Shanghai (No. 21ZR1410800)]
胥腾,博士,住院医师,研究方向:细菌耐药性与耐药机制研究。E-mail: txu20@fudan.edu.cn
黄海辉,博士,主任医师,研究方向:感染性疾病的诊治与新药研发,厌氧菌耐药性与耐药机制研究。E-mail: huanghaihui@fudan. edu.cn
10.16288/j.yczz.23-193
(责任编委: 谢建平)