基于电子鼻的牛肉微生物污染状况定量预测模型的构建

2023-11-15 07:55付硕刘淑梅张金龙张晓瑞韩方凯
食品安全导刊·中旬刊 2023年10期
关键词:快速检测电子鼻牛肉

付硕 刘淑梅 张金龙 张晓瑞 韩方凯

摘 要:构建精确度高、速度快的预测模型对推动电子鼻技术走向实际应用具有重要的意义。研究以牛肉为对象,采集不同微生物污染程度牛肉样本的电子鼻传感器信息作为模型的输入,以样本微生物污染量化指标细菌总数(Total Viable Counts,TVC)为输出变量,构建定量预测模型。在模型构建时,对比采用线性的偏最小二乘法(Partial Least Squares Regression,PLS)和快速人工神经网络极限学习机(Extreme Learning Machine,ELM)算法。结果显示,ELM模型预测性能优于PLS模型,其训练集和测试集预测误差分别为

0.040 lgCFU·g-1和0.047 lgCFU·g-1,相关系数分别为0.976和0.972。所构建ELM模型能满足实际需求,可在牛肉品质检测与控制方面发挥积极作用。

关键词:牛肉;电子鼻;模式识别模型;快速检测

Construction of Quantitative Prediction Model of Beef Microbial Contamination Based on Electronic Nose

FU Shuo1, LIU Shumei1, ZHANG Jinlong1, ZHANG Xiaorui2, HAN Fangkai3

(1.Anhui Canca Security Environment Technology Co., Ltd., Suzhou 234000, China;

2.Jiangsu University, Zhenjiang 212013, China; 3.School of Suzhou, Suzhou 234000, China)

Abstract: The construction of a high precision, high speed prediction model for promoting the electronic nose technology to the practical application has important significance. Research is an object with beef, collect different degree of microbial contamination of beef samples of electronic nose sensor information as input of the model, to sample microbial contamination to quantify the total bacterial count of the quantitative indicators as the output variable, build the quantitative prediction model. In the model building, compared with the linear partial least squares and artificial neural network fast extreme learning machine algorithm. The results show that the predictive performance of ELM model is better than that of PLS model. The predictive errors of the training set and test set are 0.040 lgCFU·g-1 and 0.047 lgCFU·g-1, and the correlation coefficients are 0.976 and 0.972, respectively.The ELM model can meet the actual demand and play an active role in beef quality detection and control.

Keywords: beef; electronic nose; pattern recognition model; rapid detection

致腐菌導致食品腐败变质,易产生有害物质,如小分子含氮化合物组胺等,直接威胁食品安全。因此,对食品中微生物污染状况的监测,对保障膳食安全极为重要。活菌总数(Total Viable Counts,TVC)是定量描述食品微生物污染状况的指标。然而TVC的常规检测方法,即平板计数法通常需要经过48 h的摇床培养,待平板上微生物生长、繁殖成可观察的菌落后,再对菌落进行计数,经过换算,得到最终结果。平板计数法耗时、费力[1],无法快速反映食品微生物污染状况,以及时调整食品保藏、销售、加工等策略。

常见的食品快速检测方法,如电子舌[2]、电子鼻[3]等智能仿生检测方法以及近红外[4]、高光谱[5]等光谱学检测方法等,均已应用于不同种类食品保藏期间TVC的定量预测。然而,这些方法得到的电化学传感器或光谱学信号,受食品基质干扰严重[6],因此建立快速检测方法所得到的传感器信号与TVC之间精确度较高的定量预测模型,成为食品快速检测方法应用于生产实际的限制性因素之一。基于此,本研究以最常见的金属氧化物半导体型电子鼻传感器数据为输入,对比采用偏最小二乘法(Partial Least Squares Regression,PLS)和快速人工神经网络极限学习机(Extreme Learning Machine,ELM)算法构建牛肉贮藏期间TVC快速定量预测模型的精确度,以期推进食品快速检测技术在食品生产实际中的应用。

1 材料与方法

1.1 电子鼻数据

本研究数据来源于DEDY等[7]于2018年发表在《Data in Brief》的数据论文。所用的电子鼻系统是基于金属氧化物半导体型气敏传感器阵列,该系统包含9根MOS传感器。电子鼻试验在密闭样品室下持续36 h,每分钟采集1次传感器信号,共计得到

2 160组电子鼻传感器阵列数据。样品共5组,最终得到5×2 160行9列的数据矩阵用于本研究的模型构建。电子鼻试验期间,牛肉样品的TVC从3 lgCFU·g-1以下(微生物污染程度轻微)增殖到近5 lgCFU·g-1(微生物污染程度严重)。图1展示出所有样品在电子鼻测试期间传感器数据及TVC数值,包含原始数据及归一化至[0,1]后的数据。

1.2 模型构建方法及性能评价指标

研究以电子鼻传感器所有数据为输入,以对应样本TVC实测值为输出,对比采用线性的PLS和非线性的ELM构建基于电子鼻技术的牛肉贮藏期间TVC定量预测模型。选择ELM的主要原因是其计算速度显著快于常见的BP-人工神经网络算法[8]。

在模型的构建过程中,随机选取1/3的样本作为测试集,其余样本作为训练集,且在PLS和ELM模型构建过程中保持一致。评估所采用的定量预测模型,本文依赖以下指标。①相关系数(r)。该系数衡量电子鼻预测的牛肉TVC值与实际值之间的相关性,r值越接近1,证明预测的相关性越高,具体计算方法见式(1)。②预测均方根误差(Root Mean Square Error,RMSE)也作为关键指标,它用于测量电子鼻预测的牛肉TVC值与实际值的误差程度,RMSE越低,代表预测精度越高,反之则预测精度较差。

式中:yi和yi分别为样本集(训练集和预测集)中第i个牛肉样本TVC的实测值和预测值,lgCFU·g-1;y为样本集中所有牛肉样本TVC实测值的平均值,lgCFU·g-1[9];n为样本数。

式中:yi和yi分别为预测集中第i个牛肉样本TVC的实测集和预测值,lgCFU·g-1;n为预测集样本数[9]。

2 结果与分析

2.1 PLS模型结果

PLS用于处理多个自变量和一个或多个因变量之间的关系,在解决多重共线性和高维数据问题时优势明显。PLS通过找到自变量和因变量之间的最大协方差来构建线性回归模型,用于预测未知样本的因变量值。

基于PLS的基础理念,模型预测能力受到PLS主成分数量的显著影响。因此,在构建PLS模型过程中,对输入的PLS主成分数进行优化是必要的。这一优化过程采用了“留一法”交叉验证。这种验证方法的核心思想是将每个样本视为验证集,用剩下的(N-1)个样本来创建PLS模型,然后运用验证集来检测新构建的PLS模型,以预测值和实测值误差的均值作为优化PLS主成分数的指标。如果对应的RMSE值最小,则认为当前条件下的PLS模型是最优的。PLS主成分筛选结果如图2所示。

从图2可以看出,当主成分因子数为8时,PLS模型的RMSE最低,为0.319 7 lg CFU·g-1。此条件下,PLS模型训练集和测试集对鱼细菌总数的预测值和实测值之间的相关关系如图3所示,其测试集相关系数为0.937,预测RMSE为0.324 lgCFU·g-1。

2.2 ELM模型结果

ELM是一种新型的單隐藏层前馈神经网络算法,具有出色的泛化性能和极快的学习速度。根据ELM理论,对于一个特定的模式识别问题,隐含层的神经元个数和传递函数可供筛选和优化,以获得预测性能较优的预测模型。鉴于人工神经网络隐含层神经元个数优化范围尚无统一范式可供遵循,本研究采用典型的试凑法,设定范围为[1,50],优化ELM隐含层神经元个数。在ELM隐含层传递函数的筛选上,对比采用3种典型的函数[8],公式为

图4显示了在隐含层神经元个数[1,50]范围内,3种传递函数条件下,ELM模型训练集和测试集的相关系数。从图4中可以看出,当选择Sin函数作为传递函数,且隐含层神经元个数为45的时候,ELM预测性能最佳,其训练集相关系数为0.976,测试集相关系数为0.972。

最优ELM模型的基本结构为9-45-1,包含9个电子鼻传感器输入变量,45个单隐含层神经元,1个样品TVC预测输出变量。模型训练集和测试集对牛肉样本TVC的预测值及实测值依样本序号排列结果如图5所示,此时训练集和测试集的RMSE分别为0.040 lgCFU·g-1和0.047 lgCFU·g-1,优于PLS模型。

3 讨论

牛肉富含水分、蛋白质、脂肪等营养成分,极易变质腐败。微生物的生长繁殖是引发牛肉变质的主要原因。微生物生长繁殖过程中,释放出大量的蛋白酶、脂肪氧化酶、过氧化物酶,使牛肉中的蛋白质和脂肪等营养元素分解为低分子化合物。蛋白质会被水解成肽,进而分解成氨基酸。氨基酸经过脱羧化、脱氨化、脱硫化等作用会生成相应的氨、小分子胺、有机酸等。脂质会在水解作用下生成游离脂肪酸、甘油、甘油酯和甘油二酯等。脂肪酸还可以进一步分解成酮酸或酮等[10]。这些产物中的烃类、酮类、醇类、醛类、酸类、酯类、含硫及杂环化合物等是牛肉保藏期间产生挥发性有机化合物的主要成分[11]。电子鼻传感器可以识别食品挥发性成分,进而实现微生物污染状况的间接预测。

从构建的PLS模型及ELM模型的预测性能来看,ELM模型的训练集和测试集相关系数分别为0.976和0.972,高于PLS模型的0.938和0.937,ELM模型的训练集和测试集的预测误差分别为0.040 lgCFU·g-1和0.047 lgCFU·g-1,均明显低于PLS模型的0.319 7 lgCFU·g-1和0.324 lgCFU·g-1。主要是因为电子鼻传感器信号与预测目标TVC值之间是非常复杂的非线性关系,这是由电子鼻传感器特性所决定的,即传感器非特异性,且相互之间交互敏感,对食品挥发性物质的敏感性存在一定程度的交叉。ELM具有出色的自学习和自适应能力,获得的结果优于线性的PLS算法[12]。

4 结论

本文研究构建了基于MOS型电子鼻信号处理的牛肉贮藏期间TVC定量预测模型。结果表明,非线性的ELM算法获得的结果较线性的PLS算法好,其训练集或测试集对样本TVC的预测值与实测值之间的相关系数均高于0.97,预测误差均低于或等于0.04 lgCFU·g-1。ELM模型预测精度高,运算速度快,能够满足实际需求,可为牛肉质量安全控制提供借鉴。

参考文献

[1]孙颖颖,董鹏程,朱立贤,等.食源性致病菌快速检测研究进展[J].食品发酵工业,2020,46(17):264-270.

[2]HAN F K,HUANG X Y,TEYE E,et al.Quantitative analysis of fish microbiological quality using electronic tongue coupled with nonlinear pattern recognitionalgorithms[J].Journal of Food Safety,2015,25(3):336-344.

[3]DEDY R W,RIYANARTO S,ENNY Z.DWTLSTM for electronic nose signal processing in beef quality monitoring[J].Sensors and Actuators B: Chemical,2021,326:128931.

[4]LIN M S,MOJGAN M,MURAD A,et al.Rapid near infrared spectroscopic method for the detection of spoilage in rainbow trout (oncorhynchus mykiss) fillet[J].Journal of Food Science,2006,71(1):18-23.

[5]HUANG L,ZHAO J W,CHEN Q S,et al.Rapid detection of total viable count (TVC) in pork meat by hyperspectral imaging [J].Food Research International,2013,54(1):821-828.

[6]SANCHEZ P D C,AROGANCIA H B T,BOYLES K M,et al.Emerging nondestructive techniques for the quality and safety evaluation of pork and beef: recent advances, challenges, and future perspectives [J].Applied Food Research,2022,2(2):100147.

[7]DEDY R W,RIYANARTO S,ENNY Z.Electronic nose dataset for beef quality monitoring in uncontrolled ambient conditions [J].Data in Brief,2018(21):2414-2420.

[8]HAN F K,JOSHUA H A,MARWAN M A R,et al.Machine-learning assisted modelling of multiple elements for authenticating edible animal blood food[J].Food Chemistry,2022(14):100280.

[9]HAN F K,HUANG X Y,JOSHUA H A,et al.Fusion of a low-cost electronic nose and Fourier transform near-infrared spectroscopy for qualitative and quantitative detection of beef adulterated with duck[J].Analytical Methods,2022,14(4):417-426.

[10]HAN F K,HUANG X Y,TEYE E,et al.Nondestructive detection of fish freshness during its preservation by combining electronic nose and electronic tongue techniques in conjunction with chemometric analysis[J].Analytical Methods,2014,6(2):529-536.

[11]孟一,張玉华,姜沛宏,等.牛肉贮藏过程中的挥发性成分分析[J].食品工业科技,2016,37(16):61-65.

[12]HAN F K,HUANG X Y,TEYE E.Novel prediction of heavy metal residues in fish using a low-cost optical electronic tongue system based on colorimetric sensors array[J].Journal of Food Process Engineering,2019,42(2):e12983.

猜你喜欢
快速检测电子鼻牛肉
酸汤牛肉里的爱
寻味牛肉
牛肉怎么做,好吃又嫩?
电子鼻咽喉镜在腔镜甲状腺手术前的应用
基于近红外光谱法的藜麦脂肪含量快速检测
飞到火星去“闻味儿”——神奇的电子鼻
利福平和异烟肼耐药基因突变快速检测方法在结核病中的应用
吃不上牛肉了
电子鼻在烤鸡香气区分中的应用
电子鼻快速检测煎炸油品质