杨渊 宋爽 陈容 刘永莲 刘春燕
摘要:目的 探討人参皂苷Rg1对亚砷酸钠(SA)诱导小鼠肾脏毒性的干预效应。方法 20只雄性健康C57BL/6小鼠采用随机数字表法均分为对照组(给予去离子水灌胃)、SA染毒组(10.0 μg/g SA进行灌胃)、人参皂苷Rg1+SA染毒组(20.0 μg/g人参皂苷Rg1在SA染毒前8 h腹腔注射+10.0 μg/g SA灌胃)、人参皂苷Rg1对照组(20.0 μg/g人参皂苷Rg1腹腔注射)。以上各组均隔天给予相应处理1次,持续14 d。HE染色观察肾组织病理改变并进行肾小管损伤(TI)评分;酶联免疫吸附试验(ELISA)检测血清肌酐(Scr)和肾组织谷胱甘肽(GSH)、血红素加氧酶-1(HO-1)、丙二醛(MDA)含量;免疫印迹试验检测肾组织HO-1、磷酸化哺乳动物雷帕霉素靶蛋白(p-mTOR)、泛素结合蛋白P62(SQSTM1/p62)、unc-51样激酶-1(ULK1)和微管相关蛋白轻链3B(LC3-B)表达水平;免疫荧光染色检测LC3-B水平。结果 与对照组相比,SA染毒组小鼠TI评分、Scr和肾组织MDA、ULK1和LC3-B表达水平升高,肾组织GSH和HO-1、p-mTOR和SQSTM1/p62表达水平降低(P<0.05),呈红色斑点的LC3-B染色强度增强、增多;与SA染毒组相比,人参皂苷Rg1+SA染毒组TI评分、Scr和肾组织MDA、ULK1和LC3-B表达水平降低,而GSH、HO-1、p-mTOR和SQSTM1/p62表达水平升高(P<0.05),LC3-B免疫荧光染色强度减弱、减少。结论 人参皂苷Rg1拮抗SA诱导的小鼠肾毒性,可能与HO-1信号激活和细胞自噬抑制有关。
关键词:人参皂苷Rg1;砷中毒;血红素加氧酶-1;自噬;肾毒性
中图分类号:R114文献标志码:ADOI:10.11958/20221834
Study of ginsenoside Rg1 antagonizes sodium arsenite-induced
nephrotoxicity in C57BL/6 mice
YANG Yuan SONG Shuang CHEN Rong LIU Yonglian LIU Chunyan
1 Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, China;
2 Ethnic Medicine Research Center, Hunan University of Medicine
Abstract: Objective To investigate the intervention effect of ginsenoside Rg1 (Rg1) against sodium arsenite (SA) induced nephrotoxicity in mice. Methods Twenty healthy male C57BL/6 mice were randomly divided into the control group (given deionized water by gavage), the SA exposure group (10.0 μg/g SA by gavage), the Rg1 intervention+SA exposure group (20.0 μg/g Rg1 was injected intraperitoneally 8 hours before SA exposure+10.0 μg/g SA gavage) and the Rg1 control group (20.0 μg/g Rg1 intraperitoneal injection). All of groups were given corresponding treatment once every other day for 14 days. HE staining was performed to observe pathological changes of renal tissue and renal tubular injury (TI) score. Serum creatinine (Scr) and renal glutathione (GSH), heme oxygenase-1 (HO-1) and malondialdehyde (MDA) were detected by enzyme-linked immunosorbent assay (ELISA). The expression levels of HO-1, phosphorylated mammalian target of rapamycin (p-mTOR), ubiquitin-binding protein P62 (SQSTM1/p62), unc-51-like kinase-1 (ULK1) and microtubule-associated protein light chain 3B (LC3-B) in renal tissue were detected by Western blot assay. LC3-B levels were detected by immunofluorescence staining. Results Compared with the control group, the TI score, Scr and expression levels of MDA, ULK1 and LC3-B in renal tissue were increased in the SA group, while expression levels of GSH and HO-1, p-mTOR and SQSTM1/p62 in renal tissue were decreased (P<0.05). The staining intensity of red spot LC3-B was enhanced and increased. Compared with the SA group, TI score, Scr and expression levels of MDA, ULK1 and LC3-B in renal tissue were decreased in the Rg1 +SA group, while expression levels of GSH, HO-1, p-mTOR and SQSTM1/p62 were increased (P<0.05). The immunofluorescence staining intensity of LC3-B was weakened and decreased. Conclusion Rg1 antagonizes SA-induced nephrotoxicity in mice, which may be associated with the activation of HO-1 signal and the inhibition of autophagy.
Key words: Ginsenoside Rg1; arsenic poisoning; heme oxygenase-1; autophagy; nephrotoxicity
砷在环境中通常以三价化合物形式存在,可污染土壤、饮用水和农作物,在一定条件下暴露于机体,可导致肾小球或肾小管组织病理学损伤、肾功能障碍[1-2]。既往研究发现,砷暴露可诱导骨肉瘤细胞或鸡睾丸组织细胞凋亡和自噬,与细胞内蛋白激酶B(protein kinase B,Akt/PKB)、哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信号通路抑制有关,而活性氧(ROS)清除剂可明显拮抗砷的毒性效应[3-4]。中药人参(Panax ginseng C.A.Mey.)属于五加科的多年生草本植物,其主要生物活性成分是人参多糖和人参皂苷。研究发现,人参多糖提取物具有抗氧化作用,能有效减轻顺铂诱导的小鼠急性肾损伤[5]。人参皂苷Rg1是人参主要药物活性成分提取物,目前市售最为常见。其除增强机体的抗氧化活性外[6],还具有激活mTOR信号通路[7]、抗炎、抑制细胞凋亡和自噬的作用[8-9]。目前,人参皂苷Rg1对砷诱导肾毒性的干预效应尚不清楚。本研究旨在探讨人参皂苷Rg1对亚砷酸钠(sodium arsenite,SA)诱导小鼠肾毒性的拮抗效应及机制。
1 材料与方法
1.1 实验动物
20只雄性SPF级C57BL/6小鼠购自湖南长沙斯莱克实验动物有限公司,动物生产许可证号:SCXK(湘)2019-0004,使用许可证号:SYXK(湘)2019-0017。小鼠体质量24.1~26.8 g,平均(25.2±1.1)g,9~10周龄。在标准饲养条件(12 h光照/黑暗、温度20~22 ℃和相对湿度60%~70%)适应性喂养1周。
1.2 主要试剂及仪器
亚砷酸钠(NaAsO2)购自美国Sigma-Aldrich公司;人参皂苷Rg1购自上海笃玛生物科技有限公司;血清肌酐(Scr)酶联免疫吸附测定(ELISA)试剂盒购自上海笃玛生物技术有限公司;丙二醛(malondialdehyde,MDA)、谷胱甘肽(glutathione,GSH)、血红素加氧酶1(heme oxygenase 1,HO-1)酶联免疫吸附试验(ELISA)试剂盒均购自上海酶联生物科技有限公司;RIPA裂解缓冲液购自美国BioVision公司;Bradford试剂购自美国Sigma-Aldrich公司;兔单克隆HO-1抗体、兔单克隆mTOR抗体与磷酸化mTOR抗体(p-mTOR)、兔多克隆酵母自噬基因Atg1同源物unc-51样激酶-1(unc-51-like kinase-1,ULK1)抗体、泛素结合蛋白p62(sequestosome 1,SQSTM1/p62)抗体、微管相关蛋白轻链3B(microtubule associated protein light chain 3B,LC3-B)抗体均购自英国Abcam公司;兔抗辣根过氧化物酶(HRP)标记IgG二抗购自美国LSBio公司;化学发光试剂盒购自上海碧云天生物公司;酶標仪购自美国BioTek公司;Motic光学显微镜购自麦克奥迪公司。
1.3 分组
采用随机数字表法将小鼠分为4组,每组5只。对照组:给予去离子水灌胃,隔天1次,持续14 d;SA染毒组:NaAsO2溶于去离子水,参考文献[10-11]及大小鼠等效剂量换算比值,以10.0 μg/g剂量进行灌胃,隔天1次,持续14 d;人参皂苷Rg1+SA染毒组:参考文献[12-13],以人参皂苷Rg1 20.0 μg/g,在SA染毒前8 h进行腹腔注射干预,然后给予SA10.0 μg/g灌胃处理;人参皂苷Rg1对照组:人参皂苷Rg1用去离子水稀释,以20.0 μg/g剂量腹腔注射,隔天1次,持续14 d。实验结束时,腹腔注射0.9%戊巴比妥钠麻醉小鼠并实施安乐死,立即收集血液和肾组织进行分析。本动物研究方案经贵州医科大学伦理委员会批准(批准号:1900222),根据动物实验:报告体内实验(Animal Research:Reporting of in vivo Experiments,ARRIVE)指南的原则执行本实验方案。
1.4 肾功能和组织病理学评价
取0.5 mL血后以4 ℃、400 r/min离心5 min,根据ELISA试剂盒操作说明检测上清液Scr含量。肾组织经4%多聚甲醛固定72 h后,用石蜡包埋以制备5 μm病理切片,然后在显微镜下行苏木精-伊红(HE)染色,并进行肾小管损伤(TI)评分[14]。TI定义为:肾小管扩张,管状上皮肿胀,细胞呈空泡样或颗粒样变性、坏死,刷状缘缺失或呈管型结构。通过显微镜观察肾组织切片中肾小管病变区域,评估每个高倍视野下病变区域的损伤面积百分率(%),每张切片计算10个高倍视野下TI评分平均值。
1.5 ELISA检测肾组织HO-1、GSH和MDA含量
肾组织分离并称质量,按1∶9质量体积比比例加入磷酸盐缓冲液(PBS)配制成0.1 g/mL,使用匀浆器进行匀浆,然后加入RPMI培养基(含有0.05%Ⅱ型胶原酶,0.002%DNase Ⅰ和0.6%胎牛血清),37 ℃下孵育30 min后,进行3次冻融循环以裂解肾组织细胞。最后,组织匀浆液4 ℃冷冻离心10 min(1 500 r/min),收集上清液,参照ELISA试剂盒操作说明书,使用酶标仪在450 nm波长下测量光密度(OD)值,并根据标准曲线将OD值转换为肾组织MDA、GSH和HO-1含量。
1.6 免疫印迹试验检测肾组织HO-1、p-mTOR、ULK1、SQSTM1/p62和LC3-B表达
肾组织分离后加入RIPA裂解缓冲液以裂解细胞提取总蛋白,使用Bradford试剂测定蛋白质浓度,肾组织样品通过十二烷基硫酸钠-聚丙烯酰胺凝胶电泳并转移到聚乙烯亚胺(PVD)膜上。随后使用5%脱脂奶粉室温摇床封闭2 h以阻断非特异性结合位点后,将膜与HO-1(1∶1 500)、p-mTOR(1∶1 000)、mTOR(1∶1 500)、ULK1(1∶500)、SQSTM1/p62(1∶800)、LC3-B抗体(1∶400)于4 ℃孵育16 h。TBS-T缓冲液洗膜3次后,加入二抗HRP IgG 室温孵育2 h,然后加入化学发光显影试剂成像。通过目标靶蛋白与抗β-肌动蛋白内参抗体的吸光度比值来评估靶蛋白表达相对水平。
1.7 免疫荧光染色检测LC3-B表达
肾组织分离后加入4%多聚甲醛溶液,4 ℃過夜固定,制备5 μm切片,切片经脱蜡、水化、洗涤后,进行高压抗原修复和山羊血清封闭,然后与LC3-B一抗在4 ℃孵育过夜。PBS缓冲液洗涤3次后,与HRP标记IgG二抗在37 ℃孵育40 min,PBS再次洗涤3次,然后在室温下用4',6-二脒基-2-苯基吲哚(DAPI)复染5 min,再次洗涤切片后,通过共聚焦显微镜(LeicaTCS-SP5)进行荧光成像观察(Alexa Fluor? 555发射波长为535 nm,DAPI发射波长为340 nm)。
1.8 统计学方法
采用SPSS 23.0进行数据分析,计量资料以均数±标准差(x±s)表示,多组间比较采用单因素方差分析,组间多重比较采用LSD-t检验,P<0.05为差异有统计学意义。
2 结果
2.1 各组肾脏组织病理损伤比较
对照组肾组织形态正常,肾小管上皮细胞核膜光滑,细胞质染色均匀,核质比正常,细胞间距正常;与对照组相比,SA染毒组肾小球球囊增大,毛细血管充血,肾小管管腔不规则,小管上皮细胞水肿,部分核消失,Scr和TI评分明显升高(P<0.05)。与SA染毒组相比,人参皂苷Rg1+SA染毒组肾小球毛细血管充血、肾小管上皮细胞和肾间质水肿改善,Scr和TI评分下调(P<0.05)。人参皂苷Rg1对照组肾组织形态正常,与对照组类似。见图1、表1。
2.2 各组肾组织氧化应激指标比较
与对照组相比,SA染毒组小鼠肾组织GSH和HO-1表达水平降低,MDA表达水平升高(P<0.05);与SA染毒组相比,人参皂苷Rg1+SA染毒组小鼠肾组织GSH和HO-1细胞水平升高,而MDA细胞水平降低(P<0.05),见表1。
2.3 各组肾组织中HO-1、p-mTOR、SQSTM1/p62、ULK1和LC3-B水平比较
与对照组相比,SA染毒组小鼠肾组织中HO-1、p-mTOR和SQSTM1/p62表达水平降低,ULK1和LC3-B表达水平升高(P<0.05)。与SA染毒组相比,人参皂苷Rg1+SA染毒组HO-1、p-mTOR和SQSTM1/p62水平上调,ULK1和LC3-B水平降低(P<0.05),见图2、3,表2。肾组织免疫荧光染色显示,与对照组相比,SA染毒组小鼠肾组织呈红色斑点的LC3-B染色强度增强、增多。与SA染毒组相比,人参皂苷Rg1+SA染毒组显示LC3-B免疫荧光染色强度减弱、减少,见图4。
3 讨论
砷是一种环境中广泛存在的高毒性致癌物,通常由于含砷矿开采冶炼、含砷农药生产使用等活动导致环境砷污染,通过直接接触或食物链摄入过量砷可导致急慢性砷中毒发生,产生肝、肾、皮肤、神经系统等多器官损害效应[15]。本研究发现,急性砷暴露可导致小鼠肾脏组织病理损伤,表现为Scr、肾小管损伤评分和氧化应激产物MDA水平升高,而肾组织抗氧化剂GSH和HO-1含量降低,提示氧化应激在砷致肾毒性中扮演着重要的角色。人参作为一种广泛使用的传统中药,其生物活性提取物富含与多糖结合的甾体皂苷,其用于中枢神经系统、代谢、感染和肿瘤等疾病治疗已有约5 000年历史[16]。研究发现,人参皂苷Rg1具有上调GSH和下调MDA的抗氧化应激效应[17],具有抑制小鼠NOD样受体热蛋白结构域相关蛋白3(NOD-like receptor thermal protein domain associated protein 3,NLRP3)炎症信号激活及改善肾脏衰老期肾小球纤维化效应[18]。Fan等[19]发现,人参皂苷Rg1可拮抗D-半乳糖诱导的小鼠亚急性肾组织损伤。Guo等[20]发现人参皂苷Rg1可通过抑制肾小管上皮细胞铁死亡而改善脓毒症诱导的急性肾损伤。本研究中,与SA染毒组相比,人参皂苷Rg1干预+SA染毒组小鼠肾组织损伤程度明显减轻,Scr、肾小管损伤评分和肾组织MDA水平降低,HO-1和GSH水平升高,而自噬标志物ULK1和LC3-B水平降低以及自噬反应底物SQSTM1/p62蛋白水平升高,提示HO-1激活、自噬抑制与人参皂苷Rg1拮抗砷诱导小鼠肾毒性效应有关。
HO-1是机体内广泛分布的一种重要的抗氧化酶,与细胞内丝氨酸或苏氨酸激酶家族mTOR信号激活有关。乙醇可诱导人食管鳞癌细胞HO-1水平上调,伴随着p38丝裂原活化蛋白激酶(p38MAPK)和mTOR信号激活[21];HO-1可与甾醇异构酶相互作用,从而激活mTOR信号通路以减轻胆固醇诱导的心肌细胞缺氧[22]。mTOR信号通路激活后,可磷酸化ULK1第757位丝氨酸并阻止ULK1激活,破坏ULK1与腺苷酸活化蛋白激酶的相互作用,从而抑制细胞自噬[23]。反之,mTOR信号抑制可导致下游靶p70核糖体蛋白S6激酶和真核起始因子4E结合蛋白1磷酸化抑制,导致细胞内基因-蛋白质翻译减少、细胞生长周期及细胞增殖抑制,从而激活细胞自噬[24]。在青蒿琥酯染毒的类风湿性关节炎小鼠模型中,抑制mTOR信号通路可加速软骨细胞自噬[25]。本研究发现,与SA染毒组相比,人参皂苷Rg1+SA染毒组肾组织p-mTOR水平升高,因此推测人参皂苷Rg1可诱导HO-1介导的mTOR信号激活,促进细胞生长及增殖、抑制肾组织细胞自噬以改善SA诱导的肾组织损伤。
综上,本研究发现人参皂苷Rg1通过激活HO-1信号介导抗氧化应激,并激活mTOR信号介导的细胞自噬抑制效应减轻SA诱导小鼠肾脏病理损伤。目前,人参皂苷Rg1拮抗砷诱导的肾毒性作用机制尚未完全清楚,人参皂苷Rg1激活HO-1和mTOR信号通路以及抑制细胞自噬的分子调控机制需要进一步探索。
参考文献
[1] ROBLES-OSORIO M L,SABATH-SILVA E,SABATH E. Arsenic-mediated nephrotoxicity[J]. Ren Fail,2015,37(4):542-547. doi:10.3109/0886022X.2015.1013419.
[2] JALILI C,KAZEMI M,CHENG H,et al. Associations between exposure to heavy metals and the risk of chronic kidney disease: a systematic review and meta-analysis[J]. Crit Rev Toxicol,2021,51(2):165-182. doi:10.1080/10408444.2021.1891196.
[3] WANG G,ZHANG T,SUN W,et al. Arsenic sulfide induces apoptosis and autophagy through the activation of ROS/JNK and suppression of Akt/mTOR signaling pathways in osteosarcoma[J]. Free Radic Biol Med,2017,106:24-37. doi:10.1016/j.freeradbiomed.2017.02.015.
[4] SHAO Y Z,ZHAO H J,WANG Y,et al. The apoptosis in arsenic-induced oxidative stress is associated with autophagy in the testis tissues of chicken[J]. Poult Sci,2018,97(9):3248-3257. doi:10.3382/ps/pey156.
[5] WEI X M,JIANG S,LI S S,et al. Endoplasmic reticulum stress-activated PERK-eIF2α-ATF4 signaling pathway is involved in the ameliorative effects of Ginseng polysaccharides against cisplatin-induced nephrotoxicity in mice[J]. ACS Omega,2021,6(13):8958-8966. doi:10.1021/acsomega.0c06339.
[6] XIE W,ZHOU P,SUN Y,et al. Protective effects and target network analysis of Ginsenoside Rg1 in cerebral ischemia and reperfusion injury:a comprehensive overview of experimental studies[J]. Cells,2018,7(12):270. doi:10.3390/cells7120270.
[7] XU X,QU Z,QIAN H,et al. Ginsenoside Rg1 ameliorates reproductive function injury in C57BL/6J mice induced by di-N-butyl-phthalate[J]. Environ Toxicol,2021,36(5):789-799. doi:10.1002/tox.23081.
[8] NI X J,XU Z Q,JIN H,et al. Ginsenoside Rg1 protects human renal tubular epithelial cells from lipopolysaccharide-induced apoptosis and inflammation damage[J]. Braz J Med Biol Res,2017,51(2):e6611. doi:10.1590/1414-431X20176611.
[9] MAO N,TAN R Z,WANG S Q,et al. Ginsenoside Rg1 inhibits angiotensin Ⅱ-induced podocyte autophagy via AMPK/mTOR/PI3K pathway[J]. Cell Biol Int,2016,40(8):917-925. doi:10.1002/cbin.10634.
[10] TURK E,KANDEMIR F M,YILDIRIM S,et al. Protective effect of hesperidin on sodium arsenite-induced nephrotoxicity and hepatotoxicity in rats[J]. Biol Trace Elem Res,2019,189(1):95-108. doi:10.1007/s12011-018-1443-6.
[11] YANG Y,SONG S,NIE Y,et al. Lentinan alleviates arsenic-induced hepatotoxicity in mice via downregulation of OX40/IL-17A and activation of Nrf2 signaling[J]. BMC Pharmacol Toxicol,2022,23(1):16. doi:10.1186/s40360-022-00557-7.
[12] QIN Q,LIN N,HUANG H,et al. Ginsenoside Rg1 ameliorates cardiac oxidative stress and inflammation in streptozotocin-induced diabetic rats[J]. Diabetes Metab Syndr Obes,2019,12:1091-1103. doi:10.2147/DMSO.S208989.
[13] GAO Y,LI J,CHU S,et al. Ginsenoside Rg1 protects mice against streptozotocin-induced type 1 diabetic by modulating the NLRP3 and Keap1/Nrf2/HO-1 pathways[J]. Eur J Pharmacol,2020,866:172801. doi:10.1016/j.ejphar.2019.172801.
[14] SONG M F,YANG Y,YI Z W,et al. Sema 3A as a biomarker of the activated mTOR pathway during hexavalent chromium-induced acute kidney injury[J]. Toxicol Lett,2018,299:226-235. doi:10.1016/j.toxlet.2018.09.005.
[15] GUO H,LI X,ZHANG Y,et al. Metabolic characteristics related to the hazardous effects of environmental arsenic on humans:a metabolomic review[J]. Ecotoxicol Environ Saf,2022,236:113459. doi:10.1016/j.ecoenv.2022.113459.
[16] MANCUSO C,SANTANGELO R. Panax ginseng and Panax quinquefolius:from pharmacology to toxicology[J]. Food Chem Toxicol,2017,107(Pt A):362-372. doi:10.1016/j.fct.2017.07.019.
[17] ZHANG G,ZHANG M,YU J,et al. Ginsenoside Rg1 prevents H2O2-induced lens opacity[J]. Curr Eye Res,2021,46(8):1159-1165. doi:10.1080/02713683.2020.1869266.
[18] SHEN X,DONG X,HAN Y,et al. Ginsenoside Rg1 ameliorates glomerular fibrosis during kidney aging by inhibiting NOX4 and NLRP3 inflammasome activation in SAMP8 mice[J]. Int Immunopharmacol,2020,82:106339. doi:10.1016/j.intimp.2020.106339.
[19] FAN Y,XIA J,JIA D,et al. Mechanism of ginsenoside Rg1 renal protection in a mouse model of d-galactose-induced subacute damage[J]. Pharm Biol,2016,54(9):1815-1821. doi:10.3109/13880209.2015.1129543.
[20] GUO J,WANG R,MIN F. Ginsenoside Rg1 ameliorates sepsis-induced acute kidney injury by inhibiting ferroptosis in renal tubular epithelial cells[J]. J Leukoc Biol,2022,112(5):1065-1077. doi:10.1002/JLB.1A0422-211R.
[21] HU J L,XIAO L,LI Z Y,et al. Upregulation of HO-1 is accompanied by activation of p38MAPK and mTOR in human oesophageal squamous carcinoma cells[J]. Cell Biol Int,2013,37(6):584-592. doi:10.1002/cbin.10075.
[22] JIN X,XU Z,CAO J,et al. HO-1/EBP interaction alleviates cholesterol-induced hypoxia through the activation of the AKT and Nrf2/mTOR pathways and inhibition of carbohydrate metabolism in cardiomyocytes[J]. Int J Mol Med,2017,39(6):1409-1420. doi:10.3892/ijmm.2017.2979.
[23] KIM J,KUNDU M,VIOLLET B,et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1[J]. Nat Cell Biol,2011,13(2):132-141. doi:10.1038/ncb2152.
[24] WANG Y,ZHANG H. Regulation of autophagy by mTOR signaling pathway[J]. Adv Exp Med Biol,2019,1206:67-83. doi:10.1007/978-981-15-0602-4_3.
[25] FENG F B,QIU H Y. Effects of Artesunate on chondrocyte proliferation, apoptosis and autophagy through the PI3K/AKT/mTOR signaling pathway in rat models with rheumatoid arthritis[J]. Biomed Pharmacother,2018,102:1209-1220. doi:10.1016/j.biopha.2018.03.142.
(2022-11-07收稿 2023-03-01修回)
(本文編辑 李志芸)