农林废弃物对厨余垃圾堆肥腐殖化的影响与微生物驱动机制

2023-10-08 07:19亓传仁李国学罗文海徐志程
农业工程学报 2023年13期
关键词:腐殖质垃圾堆厨余

施 童,陈 杰,亓传仁,李国学,罗文海,徐志程※

(1.中国农业大学资源环境学院,农田土壤污染防控与修复北京市重点实验室,北京 100193;2.农业农村部资源循环利用技术与模式重点实验室,北京 100125)

0 引言

随着中国经济不断发展以及人民生活水平持续提高,生活垃圾的产生量与日俱增。已有统计表明,2021 年生活垃圾的产生量已达27 119 万t,并且随着全国各地垃圾分类政策的有效落实,生活垃圾的整体处理率已达99.88%。在分类政策实施后,厨余垃圾这一生活垃圾重要组成主体的杂质含量显著降低,提高了其资源化利用潜力,但整体的资源化利用率仍然较低。目前,厨余垃圾的资源化处理技术主要包括好氧堆肥和厌氧发酵。其中,好氧堆肥因其具有运行操作简单、过程易于控制,并且能够产生有机肥等优势,已成为厨余垃圾的常用处理方式之一。然而,分类后的厨余垃圾有机质含量、含水率及体系致密度均显著提升,导致其在堆肥过程中存在启动升温难、渗滤液产量大、恶臭气体排放严重、产物腐熟度低等问题,从而易造成更为严重的二次环境污染问题[1]。

为解决厨余垃圾堆肥的瓶颈问题,常采用物料复配、工艺参数调控以及功能材料介导等策略,改善堆肥过程的物料理化特性,实现养分固持和腐熟度提升。其中,将高碳源农林废弃物作为辅料进行堆肥性能改善的效果已得到有效证实,并已广泛应用于实际生产中。目前,常用的堆肥辅料包括玉米秸秆、菌糠、园林废弃物、果蔬废弃物等[2-3]。通过辅料添加,能够有效弥补厨余垃圾含水率高、孔隙度差、碳氮比低等缺点,为好氧微生物生长代谢活动提供良好环境,促进有机质和养分的降解转化。例如,欧蓓等[4]研究发现,在厨余垃圾堆肥过程中添加秸秆,能在高温期有效促进芽孢杆菌(Bacillus)等好氧微生物的生长繁殖,促进有机质降解和堆体升温。此外,农林辅料富含木质纤维素和腐殖质前驱物(例如多酚),能够在堆肥过程中转化为稳定的腐殖质,提高产品腐熟度[3,5]。魏自民等[6]分别以果蔬、鸡粪和秸秆为原料开展好氧堆肥试验,研究发现,木质纤维素含量高的物料更有利于腐殖酸(humic acid,HA)合成,堆肥产品腐熟度更高。此外,不同高碳源农林辅料的孔隙度、碳氮比等理化特性也会显著改变好氧堆肥物料理化特性和微生物演替和功能特征,进而影响发酵性能[7]。然而,目前针对不同农林废弃物作为辅料对厨余垃圾堆肥过程腐殖化的影响及其响应的微生物驱动机制仍不清楚。

随着分子生物学的不断发展与普及,扩增子测序技术已逐渐应用于堆肥领域中,用于分析堆肥过程中微生物群落的组成及演替情况,揭示相关指标变化的潜在原因,从而为提升堆肥性能提供理论依据。此外,为进一步利用扩增子测序数据分析菌群潜在功能,近年来开发了诸多微生物功能预测工具,例如整合已发表可培养菌文献的原核生物功能数据库Functional Annotation of Prokaryotic Taxa(FAPROTAX)和 Phylogenetic Investigation of Communities by Reconstruction of Unobserved States(PICRUSt)[8-10]。其中,FAPROTAX能够基于16S 测序序列,注释碳氮硫等常见元素的生物地球化学循环功能,已逐渐应用于堆肥领域,用于进一步揭示堆肥腐殖化和污染气体产排的微生物功能机制。

因此,本研究旨在对比评价玉米秸秆、园林废弃物和西瓜秧三种常见的高碳源农林废弃物作为辅料对厨余垃圾堆肥过程有机质腐殖化调控的作用与微生物驱动机制。通过测定有机质组分、腐殖质及其前驱物等指标,研究不同辅料对堆肥腐殖化的影响;在此基础上,利用FAPROTAX 和16S rRNA 高通量测序技术,解析堆肥过程微生物群落结构与功能演替,并最终筛选能够有效提升厨余垃圾堆肥腐殖化的辅料类型。本研究结果将对选取适宜的辅料强化厨余垃圾堆肥产品品质提供理论指导和技术支撑。

1 材料与方法

1.1 试验材料

本试验以厨余垃圾作为堆肥主料,选用园林废弃物、玉米秸秆和西瓜秧3 种北京地区常见的农林废弃物分别作为辅料[11],进行协同好氧堆肥研究。其中园林废弃物主要由城市绿化过程中产生的园林剪枝构成。厨余垃圾取自北京某垃圾集中处理中心,玉米秸秆、园林废弃物和西瓜秧取分别取自北京市某农场、某园林绿化公司及周边农田。厨余垃圾由28.9%蔬菜、18.7%水果、38.0%餐厨、3.0%骨头、1.4%树叶和10.0%塑料等其他垃圾(湿质量)组成。堆肥前,去除骨头、纸屑及塑料等不可降解垃圾。园林废弃物、玉米秸秆和西瓜秧在试验前风干并粉碎至粒径为2~5 cm。堆肥物料的初始理化特性如表1 所示。

表1 堆肥物料基本理化性质Table 1 Physicochemical properties of composting materials

1.2 试验装置

试验设备采用实验室密闭堆肥发酵罐,有效容积为120 L。发酵罐配备可移动盖,盖子设置两个孔洞,用于气体采集和插入杆状温度传感器。发酵罐底部设置有一个进气口和一个带阀门的渗滤液出口。进气口与气泵相连,维持气体稳定供应。距发酵罐底部5 cm 处配置多孔钢板(孔径3 mm),同时用于支撑物料和保证均匀通风。

1.3 试验设计

本研究共设置4 个处理,以不添加辅料为对照处理(记为CK),其他3 个处理以厨余垃圾作为主料,分别添加园林废弃物、西瓜秧、玉米秸秆作为辅料进行堆肥试验,分别记为GW、WS 和CS。根据前期研究结果[5],厨余垃圾和辅料的添加比例设置为17:3(基于湿质量),通风速率为0.36 L/(kg · min),过程采用连续通风。本研究堆肥周期设置为16 d,主要模拟反应器堆肥实际工程运行的一次快速发酵,即温度降低至室温停止。试验过程中每天记录堆体温度,分别在堆肥第0、4、8、12、16 d 进行人工翻堆,采用多点取样法在物料混合后取约500 g 固体样品。样品分为3 份,其中一份样品使用烘箱在105 ℃条件下烘干,测定物料含水率;一份储存在-20 ℃冰箱中,用于测定物料基本理化指标和微生物指标;另一份自然风干,经粉碎后测定油脂、蛋白质、木质素、总碳(TC)、碳氮比(C/N)和腐殖质等指标。

1.4 测定方法

1.4.1 理化指标

堆肥温度采用长杆状温度计,每 d 早中晚共测定3 次;氧气浓度采用便携式沼气分析仪(Biogas 5 000,Geotech,英国)测定。含水率使用烘箱在105 ℃条件下烘干至恒质量后测定。C/N 和TC 利用元素分析仪(vario MACRO cube,德国)进行测定。

pH 值、电导率(electrical conductivity,EC)、种子发芽指数(germination index,GI)值测定:将堆肥样品和蒸馏水以1:10(质量体积比)的质量和体积比进行混合,恒温摇床振荡30 min 后,用定量滤纸过滤,取上清液,提取固体样品的水浸提液作为待测液。其中pH值和EC 值分别采用PHSJ-4F 型实验室pH 计(雷磁,中国)和DDSJ-318T 型电导率仪(雷磁,中国)测定。GI 测定参照《有机肥料:NY/T 525—2021》标准,在垫有滤纸的培养皿中加入5 mL 浸提液,均匀放入10 粒萝卜种子,盖上皿盖。每个样品设置4 个重复,对照为蒸馏水;在25 ℃的培养箱中避光培养48 h,测量根长和统计发芽率,通过以下公式计算:

1.4.2 有机质组分

纤维素、半纤维素、木质素使用纤维分析仪(ANKOM220,美国)通过范式纤维测定法测定,称取(5±0.01)g 样品,加入酸性洗涤剂1 000 mL 后煮沸1 h,坩埚过滤后用300 mL 90 ℃热水洗涤多次,再用丙酮洗涤2~3 次至滤液无色;于105 ℃烘箱中烘5 h,冷却后称质量并计算。

油脂采用乙醚索氏提取法测定[12],取(2±0.01)g混匀后的试样,加入石英砂约20 g,于沸水浴上蒸干,再在(100±5)℃干燥30 min,后全部移入滤纸筒内。将滤纸筒放入索氏抽提器的抽提筒内不断回流抽提。水浴蒸干接收瓶后再干燥冷却、称量,重复以上操作到恒质量为止(误差≤2 mg)。

粗蛋白采用凯式定氮法测定,称取(2±0.01)g 充分混匀的固体试样,加入硫酸铜0.4 g、硫酸钾6 g 及硫酸20 mL 于消化炉进行消化;消化炉温度达到420 ℃后,继续消化1 h,此时消化管中的液体呈绿色透明状,取出后冷却,再加入水50 mL,于自动凯氏定氮仪(Kjeltec 8400,瑞典)上蒸馏、自动加液、滴定和记录滴定数据。

挥发性固体(volatile solids,VS)测定采用灼烧法,将称取的样品在马弗炉(550)℃中灼烧至恒质量,根据张黎阳[13]的方法计算。

1.4.3 腐殖质前驱物

参考堆肥腐殖化机制解析的相关研究,确定如下腐殖质前驱物测定方法[14-15]。多酚采用福林酚比色法测定[16],取0.5 mL 制备好的乙醇粗提液于50 mL 容量瓶中,加入9.5 mL 蒸馏水,摇匀后加入0.5 mL 福林试剂,混匀后加入20%的Na2CO3溶液1.5 mL,充分混合后定容,在30 ℃避光的条件下放置0.5 h,空白对照为未添加没食子酸标准溶液,测定吸光值采用紫外可见分光光度仪(华辰,中国),在760 nm 下测定,每个样品平行测定3 次。

氨基酸采用茚三酮比色法测定[17],先取1 mL 样品液,再加入1 mL pH 值为5.4,2 mol/L 醋酸缓冲液和1 mL 茚三酮显色液,混匀后于100 ℃沸水中加热15 min,后用自来水冷却。放置5 min 后,加入3 mL 60%乙醇稀释,摇匀后,吸光值测定采用紫外可见分光光度仪,在570 nm 下测定(生成的颜色在60 min 内稳定)。氨基酸含量与标准曲线对照后确定。还原糖使用3,5-二硝基水杨酸(dinitrosalicylic acid,DNS)比色法测定[18],吸取5.0 mL 碱性酒石酸铜甲液和5.0 mL 碱性酒石酸铜乙液,置于150 mL 锥形瓶中,加水10 mL,加入玻璃珠,从滴定管滴加比预测体积少1 mL 的试样溶液至锥形瓶中,在2 min 内加热至沸腾,保持沸腾继续以2 s/滴的速度滴定,终点为蓝色刚好褪去,记录消耗样液的体积。

还原糖含量根据标准曲线计算得出。可溶性多糖采用紫外可见分光光度仪,通过蒽酮比色法分析,准确称取(2±0.01)g 样品用乙醇沉淀多糖,然后用热水分次溶解沉淀并稀释定容至250 mL,随后过滤,得到待测液;制备葡萄糖标准曲线,在620 nm 波长下,测定吸光度,再绘制标准曲线,并测定待测液吸光度,从而求得样品中可溶性多糖含量。

1.4.4 腐殖质组成

腐殖质(humus,HS)、腐殖酸(humic acid,HA)、富里酸(fulvic acid,FA)和胡富比(humic acid/fulvic acid,HA/FA):取1 g 风干样品溶解于20 mL 提取液(0.1 mol/L 氢氧化钠与0.1 mol/L 焦磷酸钠(体积比1∶1)),于室温条件下振荡30 min 后离心(4 000 r/min,15 min),用0.45 μm 滤膜过滤上清液(保证上清液清亮)。滤渣重复3 次上述操作(至浸提液近乎无色),混合4 次滤液后得到的即为HS 溶液。吸取20 mL HS 溶液,用6 mol/L 盐酸溶液酸化至pH 值为1,充分搅拌后静置12 h,次日在4 000 r/min 条件下离心10 min,FA 为所得上清液,HA 为沉淀。所得沉淀用0.1 mol/L NaOH溶解后得到HA 溶液,HS、FA 和HA 含量均采用总有机碳(total organic carbon,TOC)分析仪(SHIMADZU,日本岛津公司)测定TOC 进行表征[19]。HA/FA 为测得的HA 含量与FA 含量之比。

1.4.5 微生物指标测定

本研究委托深圳微科盟科技集团有限公司进行16S rRNA 高通量测序。首先,使用FastDNA SPIN Kit for Soil DNA 抽提试剂盒(MP Biomedicals,USA)从样品中提取基因组DNA。提取DNA 的质量和浓度使用琼脂糖凝胶电泳和Nanodrop-2000 光谱仪(NanoDrop technology,Wilmington,USA)确定。使用细菌通用聚合酶链反应(PCR)引物515F(5′-GTGYCAGCMGCCGCGGTAA-3′)和806R(5′-GGACTACNVGGGTWTCTAAT-3′)对细菌的16S rRNA 基因进行PCR 扩增,然后在Illumina MiSeq 平台上测序。使用QIIME2 管道对原始测序数据进行处理和分析,以获得扩增子序列变异体(ASV)的特征表[20],然后将其与预先训练的GREENGENES 13_8数据库对齐,以获得基于99%相似性水平的分类表[21]。然后使用QIIME2 特征表插件过滤被污染的线粒体和叶绿体序列;随后使用QIIME2 中的核心多样性插件计算多样性指标。此外,使用FAPROTAX 数据库对微生物群落功能进行预测,并将与C 循环和有机质降解相关的细菌功能进行提取分析。

1.4.6 数据分析方法

网络分析采用Cytoscape(3.9.1)中的“CoNet”应用程序,构建腐殖化与优势菌群之间的相关性,两个节点之间的Spearman 相关系数设置为r>0.7(P<0.05),得到原始网络分析数据,利用Gephi 0.9.2 进行网络分析。其余数据图均使用Origin 2022 绘制。

2 结果与分析

2.1 堆肥过程基本理化特性变化

在堆肥过程中,添加辅料的CS、GW 和WS 处理具有相似的温度变化趋势,均经历了升温期、高温期、降温期和腐熟期(图1a)。相比之下,纯厨余垃圾的CK处理在堆肥过程中未出现显著升温,主要是由于厨余垃圾较高的含水率和致密度,导致氧气难以在堆体内有效扩散,并且厨余垃圾也具有较高浓度的油脂和盐分,从而难以满足好氧微生物生存活动的基本条件[22]。随着有机质的不断降解,添加辅料的处理在堆肥第3 天即达到55 ℃以上,进入高温期,并在第9 天达到峰值温度(> 75 ℃),随后逐渐降低。值得注意的是,添加辅料的处理在第4 和第8 天的温度出现明显上升,可能是由于翻堆缓解了堆体异质性,并重新混匀了功能微生物,从而促进了有机物的进一步降解[23]。堆肥10 d 后,温度逐渐下降,且翻堆后也未有显著的温度上升,表明易降解有机质基本降解完全,堆肥已进入降温腐熟期。相较于园林废弃物和西瓜秧,添加玉米秸秆能够更有效地促进堆体升温,在第9 天可达78 ℃以上,且持续了更长时间高温期。这可能是由于玉米秸秆较好的持水性和孔隙结构,改善了堆体通风条件,优化了好氧微生物生境,从而加速了微生物对有机物的降解作用[24]。而由于园林废弃物中木质素含量较高,导致GW 处理升温效果相对较差。相比之下,由于西瓜秧富含蛋白质等易降解有机物,使得WS 处理在前4 d 升温最快;但随着易降解组分在堆肥前8 d 被快速降解,使得WS 处理的温度逐渐低于其他处理。O2与好氧微生物的代谢活性相关[25],由于堆肥过程有机物生物降解需要利用O2作为终端电子受体,因此各处理的O2含量与温度变化呈现相反趋势(图1b)。相较于GW 和WS 处理,CS 处理在堆肥的第12~16 d O2含量相对较低,进一步证实了玉米秸秆添加有助于促进堆肥过程有机质降解,从而延长堆肥高温期。

图1 堆肥过程基本理化性质变化Fig.1 Changes of basic physiochemical characteristics during composting

除CK 处理外,其他处理的堆体pH 值在堆肥第一周均呈现显著上升趋势,随后逐渐趋于稳定(图1c)。初始阶段pH 值的升高主要是由于随着堆肥温度升高,部分有机酸逐渐挥发或被体系中产生的NH3中和[26]。值得注意的是,WS 处理的pH 值在堆肥前4 d 迅速升至8.0以上,而CS 和GW 处理的pH 变化并不显著,可能是由于西瓜秧中含有更多易降解有机氮(表1),能够促进NH3产生,从而加速了有机酸的中和。EC 值是影响植物生长的重要因素之一[27],与pH 值不同,所有添加辅料处理的基质EC 值在堆肥过程中波动下降(图1d),主要是由于NH4+等无机离子以气体形式散逸及有机酸、还原糖等小分子物质逐渐合成为大分子腐殖质[28]。由于玉米秸秆良好的物理空间结构,为微生物的生长繁殖提供了良好的环境[29],同时促进了小分子物质的固持,所以CS 处理的EC 值较其他处理下降更为迅速。到堆肥结束时,添加辅料处理的最终pH 和EC 均值符合有机肥料标准(NY 525-2021)。

在堆肥过程中,随着有机物的降解,添加辅料的处理TC 含量总体呈下降趋势(图1e)。然而,CK 处理的TC 含量在整个堆肥过程变化并不显著,主要是由于纯厨余垃圾堆肥过程中,堆体结构致密,微生物难以存活,从而限制了有机碳降解矿化。相比之下,CS 处理的TC 含量在堆肥前4 d 显著下降,可能是由于玉米秸秆较好的孔隙结构和较大的比表面积,能够通过调节堆体的自由空域,促进氧气扩散,从而加强微生物生长繁殖,推动有机质分解[29]。然而,随着堆肥进行,CS 处理的TC 含量逐渐升高,并在堆肥结束时高于其他处理。这可能是因为添加玉米秸秆更有利于厨余垃圾堆肥过程多糖等小分子物质聚合形成腐殖质,从而促进碳素固持[30]。

添加辅料各处理的GI 值均不断上升(图1f),在堆肥结束时达到80%以上,表明堆肥已达到腐熟标准(NY 525-2021)。相比之下,由于CK 处理中有机质降解缓慢,且存在大量有机酸,从而限制了种子萌发[31],导致GI 值始终低于5%。相较于其他添加辅料处理,CS处理在堆肥结束时具有较高的GI 值(139%),可能是由于玉米秸秆添加促进腐殖质前驱物固定为腐殖质,提高了堆肥腐熟度[32]。

2.2 有机组分含量变化

相较于纯厨余垃圾,添加不同辅料均能促进厨余垃圾堆肥过程的有机质降解转化。在整个堆肥过程中,CS、GW 和WS 处理的粗蛋白、油脂、半纤维素和纤维素含量总体呈现下降趋势。并且在堆肥前8 d 下降最为明显(图2a~2d)。这可能是因为粗蛋白、油脂、半纤维素和纤维素具有易降解特性,因此在堆肥升温期和高温期能够被微生物优先利用降解[33]。相比之下,由于木质素结构复杂,不利于微生物利用,导致其降解主要出现在高温期和降温期(第4~16 天)(图2e)。其中,WS处理在堆肥前8 d,粗蛋白含量下降速度较CS、GW 处理更快,可能是因为西瓜秧中存在更多易降解物质(如蛋白质和淀粉),能够更有效地被微生物作为碳源使用,从而也使其升温速度相对较快[34]。然而,相较于WS 处理,CS 和GW 处理中木质纤维素含量的下降速率更高,特别是CS 处理尤为显著,可能是由于秸秆中的木质纤维素含量较高且比表面积较大,提高了微生物利用的可及性,有利于后续的腐殖化过程[35]。

图2 厨余垃圾堆肥过程有机组分含量变化Fig.2 Changes in organic components content during kitchen waste composting

在堆肥过程中,随着蛋白质、油脂及木质纤维素的降解,堆肥物料的VS 整体呈现下降趋势(图2f)。相比于其他两种处理,GW 处理的VS 降幅相对较小,主要是因为园林废弃物的结构更稳定且含有较高木质素,不利于微生物降解[36]。相较之下,添加玉米秸秆的CS处理中有效碳源更多,使得堆肥过程VS 的降解更快。

2.3 堆肥过程腐殖化变化

相关研究表明,堆肥过程中有机质的降解将产生氨基酸、多酚、可溶性多糖和还原糖等中间产物,与腐殖质的形成紧密相关[37]。因此,本研究在分析有机质降解的基础上,进一步探讨了在厨余垃圾堆肥过程中典型腐殖质前驱物以及腐殖质的产生和转化。

添加辅料处理的腐殖质前驱物含量均呈现在堆肥高温期升高随后逐渐降低的变化趋势(图3a~3d),而纯厨余垃圾堆肥的腐殖质前驱物含量在整个周期中并没有发生显著变化。其中,氨基酸的变化主要是由于厨余垃圾中蛋白质在高温期被微生物迅速分解形成了氨基酸类小分子物质[6],随着堆肥进行,体系中蛋白质被消耗殆尽,并且微生物腐殖化作用逐渐增强,氨基酸态氮向腐殖质形态的氮转化[6]。在堆肥前8 d,WS 处理氨基酸含量明显高于CS 和GW 处理,可能是由于西瓜秧具有更高的蛋白质含量,促进了氨基酸产生。

图3 堆肥过程腐殖化变化Fig.3 Changes of humification during composting

随着纤维素和半纤维素的逐渐分解,体系中可溶性多糖和还原糖的含量在堆肥高温期逐渐上升。与WS 处理相比,其他添加辅料处理的可溶性多糖含量较高,可能是由于其较快的木质纤维素降解,促进了可溶性多糖和多糖的生成[38]。值得注意的是,GW 和WS 处理的还原糖浓度在第4 天达到最大值,而CS 处理的还原糖浓度在第4 天继续增加,第8 天达到最大值。这可能是由于随着堆肥温度的升高,纤维素、半纤维素的分解速度加快,使得还原糖浓度持续增加;其中,GW 和WS 处理在初始阶段有机质降解和堆肥升温较快,特别是WS处理最为显著,从而促进了还原糖的快速产生,但由于GW 和WS 处理的纤维素和半纤维素含量低于CS 处理,致使其还原糖含量于第4 天达到最大值,随后逐渐下降。相比之下,添加玉米秸秆改善了厨余垃圾堆肥过程的通风效果,使相关的微生物生存条件得到了优化,实现了纤维素、半纤维素在堆肥高温期的持续分解,CS 处理的还原糖含量于堆肥第8 天达到最大值。

多酚通常是指分子量在600 Da 以上并且包含多个酚羟基结构的化合物,在堆肥过程中,多酚会在多酚氧化酶作用下形成苯醌类物质,最终合成腐殖质[39]。因此,在富含木质纤维素的堆肥中通常可以产生更过多酚,进而促进HA 合成[40]。不同于氨基酸的产生,堆肥前8 d多酚含量的升高可能是由于物料中木质素的降解转化。尽管木质素在堆肥前期降解较慢,但分解产生的多酚不易被为矿化,且此时腐殖化作用较为缓慢,因此促进了堆肥前期多酚的积累[41]。然而,随着前驱物的不断产生和积累,多酚能够与可溶性多糖、氨基酸等中间产物发生缩合反应,促进腐殖质的合成[42],使得多酚含量在堆肥后期持续下降。值得注意的是,在堆肥第8 天,CS 处理的多酚浓度相较于GW、WS 两种处理更高,可能是因为其更高的木质素降解效率,促进了多酚产生,进而通过氧化酶催化形成苯醌类物质,促进腐殖质合成[43]。

添加辅料处理的HS 含量在整个堆肥过程呈现波动上升趋势(图3e)。具体而言,CS、GW 和WS 处理的FA 含量在堆肥进入高温期后开始快速下降(图3g)。已有研究表明,在堆肥过程中FA 一部分会被微生物作为碳源矿化,而另一部分则进一步合成稳定的HA[44]。因此,从堆肥第4 天开始,所有添加辅料处理的HA 含量及HA/FA 值开始逐渐上升。此外,多酚、氨基酸及还原性糖等腐殖质前驱物的产生也是HA 升高的重要原因[45]。其中,CS 处理的HS 和HA 含量较其他处理提高6%~75%,主要原因是添加玉米秸秆能够加速纤维素、蛋白质等有机质的降解以及腐殖质前驱物的合成(图2),从而使堆肥腐殖化进一步增强[44]。

2.4 微生物群落的动态变化

在分析堆肥过程基本理化特性及腐殖化的基础上,进一步利用16S rRNA 高通量测序技术,对门和属水平的细菌群落演替特征进行分析,用于揭示三种高碳源辅料对厨余垃圾堆肥过程腐殖化影响的关键机制(图4)。在门水平细菌群落中,优势菌门主要包括变形菌门(Pseudomonadota)、厚壁菌门(Firmicute)和拟杆菌门(Bacteroidota),总相对丰度达80%以上(图4a),其中,Firmicute在整个堆肥过程占据主导地位(图4a)。在堆肥起始阶段,Firmicute 中的优势菌属为巨球型菌(Megasphaera)和乳杆菌(Lactobacillus)(图4b),这些菌属已被证明广泛存在于厨余垃圾中,导致厨余垃圾腐败酸化,降低堆肥初始pH[5]。随着堆肥进入高温期,Firmicute的相对丰度小幅度下降,且芽孢类的嗜热菌属成为优势菌属,包括解脲芽孢杆菌属(Ureibacillus),芽孢杆菌(Bacillus)和单胞芽孢杆菌(Sinibacillus)。研究表明,芽孢杆菌类菌属具有嗜热性,能够在堆肥高温期通过分泌蛋白酶、纤维素酶和淀粉酶等功能酶,实现有机物快速降解转化,并促进腐殖质生成[46]。与WS处理相比,其他两种添加辅料的处理在堆肥高温期具有较高丰度的Ureibacillus和Bacillus,导致大分子有机物的快速转化,从而促进了多酚、氨基酸及还原糖等前驱物形成。此外,Thermobacillus的丰度在高温期有所增加。RAKOTOARIVONINA 等[47]研究表明,Thermobacillus能够产生木质纤维素分解酶,使木质素等难降解有机物的降解更快。相比于WS 处理,该菌属在GW 和CS 处理高温期丰度更高,促进了堆肥过程纤维素和半纤维素含量的快速下降(图3c 和3d)。随着堆肥进入降温期,Firmicutes 相对丰度显著下降(图4a),主要是由于温度降低,减小了堆体的环境过滤作用,提高了菌群的多样性和丰富度[48]。此时,Firmicutes 的主要菌属变为拟诺卡菌属(Novibacillus)、海洋杆菌属(Oceanobacillus),这两种菌属能够分解纤维素、木质素、3-葡聚糖和甲壳质等难降解有机物的功能酶,在堆肥后期有助于将木质纤维素转化为腐殖质前驱物,进而促进腐殖质合成[49]。与WS 处理相比,在CS 和GW 处理中这两种菌的丰度相对较高,促进了木质纤维素的降解(图2e),有利于堆肥腐殖化。

图4 不同高碳源辅料在堆肥过程细菌群落门水平的相对丰度和属水平的相对丰度Fig.4 Relative abundance of bacterial communities at phylum and genus levels during composting of kitchen waste with different bulking agents

Pseudomonadota 的相对丰度随着堆肥温度降低逐渐升高(图2a)。在堆肥开始阶段,Pseudomonadota 的优势菌属是不动杆菌属(Acinetobacter)和肠杆菌(Enterobacter),可将油脂和蛋白质作为呼吸作用的电子供体,将其分解利用[50]。随着堆肥温度的升高,这两种厌氧发酵菌因为具有嗜热敏感性,致使相对丰度逐渐降低[51]。进入降温期后,Pseudomonadota 相对丰度开始增加,假单胞菌属(Pseudomonas)和极小单胞菌(Pusillimonas)逐渐成为优势菌属。有研究发现,Pseudomonas对粗蛋白降解成氨基酸的促进效果明显,能够聚合形成腐殖质,促进堆肥腐殖化[52]。相比于添加玉米秸秆和西瓜秧,园林废弃物的添加使该菌属更加丰富,致使GW 处理的蛋白质含量在堆肥腐熟期迅速下降(图2a),驱动氨基酸形成(图3a),进而促进HA 了合成(图3f)。

Bacteroidota 从堆肥降温期开始逐渐富集,在腐熟期可占到总相对丰度的10%左右(图4a)。有研究表明,Bacteroidota 属于嗜温菌,在堆肥降温期能够促进腐殖质前驱物的生成和难降解有机物的分解[53]。其中,莫氏杆菌(Moheibacter)和黄杆菌属(Flavobacterium)是隶属于该菌门的优势菌属(图4b),负责合成芳香化合物和降解含氧官能团[54]。相比于其他处理,GW 处理中木质素含量较高,促进了优势菌群的富集,从而有着更高的Moheibacter和Flavobacterium的丰度,表明园林废弃物对堆肥腐殖质的芳香化促进明显,增加官能团不饱和度。

2.5 细菌群落与腐殖化指标之间的相关性分析

本研究进一步使用网络图分析腐殖化指标和细菌群落优势菌属之间的相关性。如图5 所示。

图5 细菌群落和腐殖化相关指标之间的关系。Fig.5 Relationships between bacterial communities and humification-related indicators.

堆肥过程中,FA、HA 及前驱物指标与Bacillus、Thermobacillus等优势菌属存在显著相关性,表明这些优势菌属对驱动腐殖化具有关键作用。总体来说,优势细菌属与腐殖化指标总体呈现正相关。在腐殖质前驱物方面,氨基酸含量与Ureibacillus和Bacillus呈现显著正相关,这是因为芽孢杆菌类细菌对大分子蛋白质等含氮有机物的分解迅速[55],其高丰度驱动CS 处理在堆肥高温期的氨基酸含量增加迅速(图3a)。另外,由于在HA的合成中氨基酸作为前驱物参与,因此HA 含量与其含量呈负相关。还原糖含量主要与Thermobacillus和Pseudogracilibacillus等高温嗜热菌呈显著正相关,可能是由于这些细菌能够促进纤维素类有机质的降解,从而增加还原糖含量。Oceanobacillus、Flavobacterium与多酚呈现正相关性,与以往的研究结论相同,主要是因为这些细菌对木质纤维素的降解转化有促进作用,从而导致多酚的产生(图3e),并加强腐殖质的芳构化[56]。在堆肥高温期,GW 处理和CS 处理中这些菌属丰度明显高于WS 处理,导致了还原糖浓度显著上升(图3d)。

在腐殖质组分方面,FA 与Bacillus、Thermobacillus表现为显著的负相关关系,且HA 与FA 也呈现明显负相关,可能是由于在堆肥过程中,这两类菌属可能是驱动FA 向HA 的转化的主要微生物[45]。HA 与Moheibacter和Caldicoprobacter同样呈现出正相关性,表明该菌属能促进HA 的形成。通过网络分析,可以进一步确认,Thermobacillus、Bacillus、Flavobacterium等细菌是驱动堆肥过程有机质转化为腐殖质前驱物,进而推动腐殖质形成的关键细菌群落,对腐殖化具有重要调控作用。

2.6 细菌群落的功能预测

本研究进一步采用FAPROTAX 数据库对参与厨余垃圾堆肥过程有机物降解相关的细菌群落进行了功能分析,用于揭示微生物对堆肥腐殖化的影响。厨余垃圾堆肥过程的C 循环功能主要为发酵和化能异养(图6)。

堆肥初期占据主导地位的细菌是具有芳香化降解功能的细菌,主要以Megasphaera和Lactobacillus为主,能够降解酚类和芳香醇等芳香类物质。随着堆肥的进行,C 循环的主要功能包括芳香化作用、好氧化能作用。这可能是由于堆肥进入高温阶段,Thermobifida、Bacillus和Ureibacillus等具有可溶性有机物降解功能的细菌丰度增加,促进了腐殖质前驱物的大量增加。在堆肥结束时,C 循环的主要驱动因素是纤维素降解,尿素酶水解和木质素降解。这种变化的主要原因是在堆肥后期Flavobacerium和Moheibacter的大量繁殖,使得木质素和纤维素分解功能得到增强,促进了氨基酸、多酚、还原糖等形成腐殖质。

相比于添加西瓜秧和园林废弃物,添加秸秆能够提高与芳香族化合物降解有关的微生物丰度,促进木质纤维素降解。同时,在GW 和CS 处理中,具有木聚糖降解、纤维素降解功能的菌群相对丰度也明显大于WS 处理,主要由于园林废弃物和玉米秸秆中较高的纤维素和半纤维素含量,促进了菌群的富集[57]。随着堆肥进行到第16 天,与其他两个处理相比,CS 处理中具有纤维素降解、木聚糖降解功能的细菌丰度明显更高。这也表明了玉米秸秆添加对堆肥过程木质纤维素的降解有促进作用,并且玉米秸秆相较于其他两种辅料更能促进堆体快速升温,从而加速有机质的降解,促进腐殖化进程。

3 结论

1)园林废弃物、玉米秸秆和西瓜秧作为辅料,均能有效改善厨余垃圾堆肥性能。与西瓜秧和园林废弃物作为辅料相比,添加15%的玉米秸秆能够保障厨余垃圾堆肥快速升温,高温期可维持10 d;西瓜秧具有较高蛋白含量,将其作为辅料能够在堆肥初期促进快速升温,但相比于园林废弃物和玉米秸秆辅料其高温期较短。

2)玉米秸秆作为对多酚、氨基酸和还原糖等腐殖质前驱物的生成有促进作用,保障堆肥腐熟和有机质腐殖化,堆体种子发芽指数(germination index,GI)在堆肥结束时提升至130%;园林废弃物有较高的木质素含量,有利于堆肥过程的空间结构稳定和腐殖质的不饱和官能团生成。

3)相关性分析表明,玉米秸秆添加能够富集Oceanobacillus、Thermobacillus、Flavobacterium、Bacillus和Moheibacter等具有纤维素降解、芳香化合物降解和纤维素降解功能的细菌,有助于有机质降解有助于有机质降解和腐殖质合成。

猜你喜欢
腐殖质垃圾堆厨余
厨房里的芽芽
落叶
厨余垃圾特性及预分选处理技术
铁对生活垃圾堆肥影响的研究进展
厨余垃圾变废为宝 有机肥市场方兴未艾
对一个垃圾堆的观察
不同来源堆肥腐殖质还原菌异化铁还原能力评估与调控
把垃圾堆进博物馆
腐殖质组学研究进展
不同厨余垃圾发酵效果比较