双贮备系统冷/温/热贮备模型的优化选择研究

2023-09-27 23:34金海波赵欣越
自动化学报 2023年9期
关键词:稳态概率状态

金海波 赵欣越 桑 雨

高可靠控制系统在现代工业的诸多领域中越来越重要,如航空航天、化工、核能、武器、生产制造等领域[1-3].实现控制系统高可靠性的一个主要手段是采用贮备技术.目前,对于一些先进生产制造企业,具有双贮备设备的控制系统已逐渐涌现并凸显其作用[4].因此,对这些双贮备系统的可靠性和经济性等指标进行定量分析和优化具有重要的理论意义和实际价值.

贮备系统按照贮备设备在系统运行时是否失效通常分为: 冷贮备系统、热贮备系统和温贮备系统[5-6].冷贮备系统是指系统运行过程中,贮备设备不参与工作也不老化.对能耗要求极高的系统往往配成冷贮备系统,如冶金系统、武器系统等[7].热贮备系统是指运行设备和贮备设备在相同的环境下工作,因此两种设备的失效率相同.热贮备系统主要是对系统切换时间要求极高的系统,如网络打印机、飞机引擎等系统[8-9].温贮备系统是指贮备设备在系统工作期间参与工作,但在温和的环境中工作其失效率小于运行设备.对需要平衡切换时间和能耗的系统大都配成温贮备系统,如电力系统、存储系统、高性能计算系统和飞机控制系统等[10-13].

由于三种贮备系统在不同应用领域中都有重要的作用,因此学者们对每种贮备系统在故障检测、失效分析、可靠性分析、冗余分配及优化维修等方面都做了深入研究并取得了一定研究成果[14-15].在冷贮备系统研究方面,Chen 等[16]对两部件冷贮备系统在不同失效机理的累积作用下进行了可靠性分析.分析过程中作者考虑了部件工作状态和贮备状态之间的依赖关系,评估了系统在不同失效机理影响下的动态演化过程,计算了不同阶段应力持续影响下的部件损坏程度,最后建立了基于改进的序列二值决策图方法的系统可靠性模型.Zhong 等[17]对双设备组成的冷贮备控制系统提出了基于半Markov理论的最优预防维护策略.所提策略中作者使用再生点技术和半Markov 过程刻画了系统状态转移概率并用Markov 更新理论建立了系统每个状态逗留时间分布的线性方程组,最后以最大化系统寿命为目标,优化了系统最优维护周期.Wang 等[18]研究了由双设备组成的冷贮备系统的更换策略,首先假设系统恶化过程服从广义Polya 过程,在此假设下,作者以最小化系统长期平均费用率(Cost rate)为目标函数,给出了系统的最优更换策略.陈童等[19]针对装备系统中多状态工作部件存在退化失效与突发失效竞争的情况,以冷贮备系统为研究对象,研究随机检测策略.其中工作部件在各性能水平停留时间、各类维修时间等随机时间变量以及外部冲击的到达过程均采用相位型 (Phase-type,PH)分布进行描述.在此基础上,建立了多状态冷贮备系统可靠性模型,得到了系统可靠性主要参数的解析表达式.在热贮备系统研究方面,研究成果相对较少,原因在于热贮备系统中的工作设备和贮备设备失效率相同且以并联方式工作.因此热贮备的可靠性可完全借鉴并联系统的可靠性方法进行分析.曹晋华等[20]利用Markov 更新过程和交替更新过程研究了两个不同部件组成的热贮备系统,推导了系统首次失效时间与其后停工时间的联合分布、修理工在任一时刻忙的概率以及在(0,t]内系统失效率的分布及其均值等性能指标.Patowary 等[21]采用Markov模型结合故障树分析(Fault tree analysis,FTA)方法研究了热贮备微电网系统的可靠性,所提方法与传统Markov 和FTA 方法相比能够适应不同的系统失效率.与冷贮备系统相比,温贮备系统中的贮备设备在贮备期间也逐渐恶化存在失效风险,但失效风险小于热贮备系统.从贮备设备失效率角度看,冷贮备和热贮备属于温贮备的两个特例.因此温贮备模型是更为一般的贮备模型,这也导致温贮备系统的可靠性分析难度急剧增加.在温贮备系统研究方面,近年来涌现出许多重要成果.Huang 等[22]以卫星数据处理子系统为背景,研究了一类特殊结构的温贮备系统,该类系统由两组相同数量的不同部件组成,一组是工作部件,另一组是温备份部件.两组部件分别由两个电源供电.对这类贮备系统,作者给出了系统可靠度模型,建立了各个部件可靠度的闭合方程组,推导了系统可靠度的解析解.然而,该研究成果局限于各部件寿命都符合指数分布的情况,对其他寿命分布不再适用.Ma 等[23]研究了两部件温贮备冷却系统,采用多阶段维纳过程刻画系统恶化趋势,提出了基于温度检测数据的优化维护模型.该模型中,同时考虑稳态温度控制和系统寿命阈值,优化系统整体维护费用.尹东亮等[24]对具有维修和保养两类活动的多状态温贮备系统进行了研究,考虑了维修较保养具有更高优先级的情况.用PH 分布构建了系统状态转移矩阵,推导了系统稳态可用度、系统故障率、平均故障间隔时间等可靠性指标.刘宝亮等[25]研究了修理设备和开关不完全可靠情形下的温贮备可修系统,用补充变量法和Laplace 变换相结合的方式推导了系统瞬时可用度.该成果实际上是Kuo 等[26]研究成果的进一步扩展.

由此可见,关于三种类型贮备系统的可靠性问题学者们做了大量研究,同时取得了许多重要成果.然而这些成果大多是针对“用一备一”的情况进行研究.随着某些尖端系统对高可靠性的要求,“用一备二”的情形逐渐涌现.对该类系统的研究也刚刚起步,其研究成果也鲜有报道.目前,我国某自动化厂商已经开始研发具有双贮备设备(即“用一备二”)的控制系统,对该种控制系统配成冷/温/热三种模型中的何种模型是研发过程中需要解决的关键问题之一,具有现实意义.原因在于最优贮备模型可以提高系统稳态可用度(即可靠性),降低维修人员忙期稳态概率以及系统稳态平均维修次数,延长系统寿命.除此之外,在经济方面最优贮备模型还能降低系统维修费用,提高系统单位时间内产生的效益.然而据作者查阅大量相关文献可知,目前关于双贮备系统的最优贮备模型选择方面研究甚少,没有可借鉴的通用方法.因此如何建立系统三种贮备模型并给出确定不同条件下最优贮备模型的优化选择算法是主要研究难点.为此,本文用Markov 及半Markov 更新理论结合Laplace 及Laplace-Stieltjes 变换技术分析系统状态转移概率和系统再生状态的平均逗留时间,推导系统稳态可用度、维修人员忙期稳态概率和系统稳态维修次数的可靠性指标以及系统单位时间内净收益的经济指标,给出确定不同条件下贮备模型的优化选择算法.

为便于理解,模型中主要变量和符号如表1 和表2 所示.

表1 模型中主要变量说明Table 1 Main variables involved in models

表2 模型中主要符号说明Table 2 Main symbols involved in models

1 系统冷贮备模型分析

该模型下系统由三个同类型的设备组成,其中一个运行,另外两个冷贮备(即贮备期间设备既不失效也不老化).令随机变量X表示设备在运行期间的寿命,Z表示失效设备的维修时间.因为电子设备的寿命多数服从指数分布或近似服从指数分布[27],而失效设备的维修时间由多种因素决定,如维修人员的维修水平、失效设备的复杂程度以及维修工具的先进性等因素.因此维修时间往往不服从某一特定类型的分布[28].所以设运行设备寿命服从参数为λ的指数分布F(t,λ),失效设备维修时间服从一般分布G(t),即X∼F(t,λ),Z∼G(t).经分析,此系统共有6 个不同状态:

为了建立系统在再生状态下的更新方程,需要将这些状态进行状态划分.根据X∼F(t,λ),Z∼G(t),通过分析易知,系统进入状态S0,S1,S2,S3和S4的时刻均是系统的再生时刻(又称再生点),而进入状态S5的时刻是非再生时刻.因此S0,S1,S2,S3和S4是再生状态,S5是非再生状态(又称滑过状态)且是失效状态.状态之间的转移关系如图1所示.

图1 冷贮备系统状态转移图Fig.1 State transition diagram of the cold-standby system

1.1 系统半Markov 核函数

令X(t)=Sj表示时刻t系统处于状态Sj,Tn表示系统第n次状态转移时刻,Zn=X(Tn+0)表示第n次转移时刻系统进入的状态,容易验证{Zn,Tn,n ∈N} 是状态空间E={Sj|j=0,···, 5} 上的Markov 更新过程,{X(t),t≥0} 是半Markov过程.因此需对系统的半Markov 核函数Qij(t),i,j=0,···, 5进行分析.如图1 所示.

1)当系统处于S0时,如果运行设备失效,则其中一个冷贮备设备被立刻激活,此时系统转移至S1.因此,Q01(t)可表示为

2)当系统处于S1时,如果冷贮备设备激活完成,则该设备进入运行状态,且失效设备进入维修状态.此时系统转移至S2.因此,Q12(t)可表示为

3)当系统处于S2时,此时有下述两种情况:

a)如果维修设备在运行设备失效前修好,则系统转移至S0.因此,Q20(t)可表示为

b)反之,如果运行设备在维修设备修好前失效,则该设备进入等待维修状态且维修设备立刻暂停维修,冷贮备设备被激活.此时系统转移至S3.因此,Q23(t)可表示为

4)当系统处于S3时,冷贮备设备激活完成时,该设备进入运行状态,暂停维修的设备开始继续维修,此时系统转移至 S4.因此,Q34(t)可表示为

5)当系统处于S4时,此时有下述两种情况:

a)如果维修设备在运行设备失效前修好,则修好后的设备进入冷贮备状态,等待维修的设备开始维修,此时系统进入S2.因此,Q42(t)可表示为

b)反之,如果运行设备在维修设备修好前失效,则系统转移至S5.因此,Q45(t)可表示为

1.2 系统所有再生状态的平均逗留时间

令µi和Fi(t),i=0,1,2,3,4,分别表示系统在状态Si的平均逗留时间和概率分布函数.令Pi(t)表示系统在状态Si的存活函数,即Pi(t)=1-Fi(t)=(t).对每个状态的平均逗留时间µi进行分析可得

1.3 系统性能指标

对系统稳态可用度、维修人员稳态忙期概率以及系统稳态平均维修次数三个性能指标进行分析.

1.3.1 系统稳态可用度

设当前时刻系统处于状态S0,经过时间t后,根据系统状态是否发生变化,存在两种情况: 1)如果没有发生变化,即系统依然停留在S0,此种情况可表示为P {X ≥t}.此时系统的瞬时可用度为A0(t)=P {X ≥t}·1=P {X ≥t}.2)如果系统状态发生变化,如图1 所示系统只能转移到S1.此时根据Markov 更新理论,系统瞬时可用度为

其中,符号 “∗” 表示卷积运算符.根据概率加法原理可得:A0(t)=Q01(t)∗A1(t)+P{X ≥t}.同理可得系统在其余再生状态S1,S2,S3,S4下的瞬时可用度更新方程.从而系统瞬时可用度的更新方程组为

对式(13)进行Laplace 变换得

解式(14)可得

根据Abel 定理,系统稳态可用度为

1.3.2 维修人员稳态忙期概率

与第1.3.1 节类似,首先建立维修人员在t时刻忙期的瞬时概率更新方程组

对式(17)进行Laplace 变换得

解式(18)可得

根据Abel 定理,维修人员稳态忙期概率为

1.3.3 系统稳态平均维修次数

同理,建立系统在 (0,t] 时间内维修次数的更新方程组

对式(21)进行Laplace-Stieltjes 变换得

解式(22)可得

其中,Γ4(s)和 Γ6(s)与式(19)中相同.

根据Abel 定理,可得系统稳态平均维修次数为

其中,NV=p23+p42.

1.3.4 系统稳态激活概率

建立系统在t时刻的激活概率更新方程组

对式(25)进行Laplace 变换得

解式(26)可得

Γ6(s)与式(19)中相同.

根据Abel 定理,系统稳态激活概率为

1.4 系统单位时间内产生的经济效益

系统单位时间内的经济效益 Θ1等于系统的运行收益减去设备的维修费用、支付给维修人员的费用、系统激活期间的停工费用以及系统的安装费用.因此

其中,c0,c1,c2,c3分别表示系统单位时间内的运行收益、设备维修费用、支付给维修人员的费用、停工费用,I表示一个设备的安装费用.

2 系统温贮备模型分析

该模型下系统由三个同类型的设备组成,其中一个设备运行,另外两个设备温贮备(即贮备设备在温和的环境下运行,其失效率低于运行设备).令随机变量Xi,i=1,2,3 表示第i个设备在运行期间的寿命,Yi表示第i个设备在贮备期间的寿命,Zi表示第i个设备失效后的维修时间,F(t,λ)表示参数为λ的指数分布,G(t)和G1(t)表示一般分布.假设运行设备和温贮备设备的寿命分别服从参数为λ和λ1的指数分布,即Xi∼F(t,λ),Yi∼F(t,λ1).运行设备和温贮备设备失效后的维修时间均服从一般分布,但实际系统中这两种维修时间往往不同,需要分别考虑.因此,如果Zi是运行设备失效后的维修时间,则Zi∼G(t);反之,如果Zi是温贮备设备失效后的维修时间,则Zi∼G1(t).为了便于描述模型,进一步假设:

1)X1,X2,X3,Y1,Y2相互独立.

2)系统不同状态之间的转移是瞬时的.

3)设备失效后,如果没有其他设备正在维修,则维修人员立刻对该设备进行维修;否则,该设备进入等待状态直到其他设备维修完成.设备修复后,其寿命分布像新的设备一样.

经分析可得系统共有13 个状态:

与冷贮备模型分析过程相同,经分析可得:S0,S1,S2,S7和S12是再生状态;S3,S4,S5,S6,S8,S9,S10和S11是非再生状态;S5,S6,S8和S11是失效状态.状态之间的转移关系如图2 所示.

图2 温贮备系统状态转移图Fig.2 State transition diagram of the warm-standby system

2.1 系统半Markov 核函数

与第1.1 节类似,经分析可得温贮备模型下系统所有半Markov 核函数为(具体分析过程见附录A)

2.2 系统在所有再生状态的平均逗留时间

与第1.2 节类似,经分析可得系统在每个再生状态的平均逗留时间µi,i=0,1,2,7,12 为(具体分析过程见附录B)

2.3 系统性能指标

本节对系统的稳态可用度、维修人员稳态忙期概率和系统稳态平均维修次数三个性能指标进行分析.

2.3.1 系统稳态可用度

与第1.3.1 节类似,经分析可得系统稳态可用度为

2.3.2 维修人员稳态忙期概率

与第1.3.2 节类似,经分析可得维修人员稳态忙期概率为

2.3.3 系统稳态平均维修次数

与第1.3.3 节类似,经分析可得系统稳态平均维修次数为

2.4 系统单位时间内产生的经济收益

与第1.4 节类似,温贮备系统单位时间内产生的经济效益 Θ2可表示为

其中,参数c4,c5,c6的含义分别与式(29)中的c0,c1,c2相同.

3 系统热贮备模型分析

双贮备设备下热贮备系统实质上是三个设备以并联的方式工作.该模型中不考虑某个设备失效后负载均衡对其他运行设备失效率造成的影响.因此三个设备的失效率和维修率均视为相同.实际上,该模型的分析方法与温贮备系统模型的分析方法相同,在分析过程中只需令λ1=λ,β1=β即可.因此,该模型的分析过程略.下面只给出系统单位时间内的净收益函数

其中,参数c7,c8,c9的含义分别与式(29)中的c0,c1,c2相同.

4 系统冷/温/热贮备模型优化选择算法

从系统性能指标(即稳态可用度、维修人员稳态忙期概率、系统稳态平均维修次数)以及经济指标(即系统单位时间内净收益)两个方面,分别给出双贮备系统冷/温/热贮备模型的优化选择算法.

算法 1.以系统性能为目标的双贮备系统冷/温/热贮备模型优化选择算法

算法 2.以系统单位时间内净收益为目标的双贮备系统冷/温/热贮备模型优化选择算法

5 实例分析

以实际的双贮备PLC (Programmable logic controller)控制系统(如图3 所示)为研究对象,进行实例分析.从系统性能指标,即系统稳态可用度、维修人员稳态忙期概率、系统稳态平均维修次数,以及经济指标,即系统单位时间内净收益两个方面,对系统贮备模型优化算法的输入参数进行假设.

图3 双贮备冗余控制系统Fig.3 Redundancy control system with dual-standby device

为了给出合理的参数假设,首先对图3 所示的系统进行简要描述.该PLC 控制系统是我国某自动化厂商自主研制的高可靠双贮备控制系统.系统中每个PLC 设备经过加速寿命测试后得到平均工作寿命约为1800 天,因此运行设备的平均失效率设为λ=0.00055 (个/天).温贮备设备失效率与工作环境有关,设其为λ1∈[0.00001,0.00055] (个/天).维修时间一般服从指数分布,即G(t)=1-e-βt,.其中参数β,β1分别表示运行设备和温贮备设备失效后的平均维修率.实际上,设备失效后需要返厂、检测、维修、测试、现场安装调试、重新运行等环节.因此根据设备历史维修数据可得运行设备失效后从返厂到重新运行约为7~30 天,温贮备设备约为5 到15 天.因此设β ∈[0.03,0.14](个/天),β1=[0.067,0.2] (个/天).该系统如果配成冷贮备模式,则当运行设备失效后,冷贮备设备能够自动上电并上载控制程序以及导入设备失效前的数据,整个激活过程需要3 min 左右.通过对历史激活数据的统计分析可得贮备设备激活时间服从正态分布,即

其中,参数γ和σ分别代表均值和方差.因此设γ=0.0021 (天),σ=0.0007.

5.1 以系统性能为目标的实例分析

5.1.1 以稳态可用度为目标的实例分析

令λ=0.00055,λ1=0.00011,β=0.05,β1=0.1,γ=0.0021,σ=0.0007,系统性能指标为稳态可用度.将这些参数代入算法1,在MATLAB (2014b)环境下运行算法1 (公式推导部分利用MATLAB的符号计算),其计算结果如表3 所示.

表3 系统稳态可用度Table 3 System steady-state availability

表3 中,模型I、模型II 和模型III 分别表示冷贮备模型、温贮备模型和热贮备模型.由表3 可知,.因此以系统稳态可用度为目标时,算法1 输出为: 冷贮备是最优贮备模型.由于温贮备设备的失效率与其工作环境有关,因此属于可变参数,为了研究该参数对系统稳态可用度的影响,令λ1从 0.00001 变化到 0.00055,步长为 0.00001,其他参数不变.将这些参数重新代入算法1,其计算结果如图4 所示.

图4 λ1 对三个模型的稳态可用度的影响Fig.4 Impact of λ1 on steady-state available of the three models

由图4 可知,温贮备系统的稳态可用度随λ1的增加而降低.∀λ1∈[0.00001,0.00055],温贮备系统的稳态可用度均小于冷贮备系统,但均大于热贮备系统.可见温贮备设备的失效率对温贮备系统稳态可用度有一定影响,但对算法1 输出结果即最优贮备模型没有影响.

5.1.2 以维修人员忙期稳态概率为目标的实例分析

参数λ,λ1,β,β1,γ,σ取值与第5.1.1 节相同,系统性能指标为维修人员忙期稳态概率.将这些参数代入算法1,其计算结果如表4 所示.

表4 维修人员忙期稳态概率Table 4 Steady-state probability of repairmen busy

由表4 可知,.因此以维修人员稳态忙期概率为目标时,算法1 输出结果为: 冷贮备是最优贮备模型.实际上,运行设备和温贮备设备失效后的维修率(即参数β,β1)对维修人员稳态忙期概率有直接影响,因此,令β∈[0.03,0.14],β1=[0.067,0.2],两个参数的变化步长均设为0.005,其他参数不变,研究β对,的影响以及β,β1对的影响.其结果分别如图5 和图6 所示.

图5 运行设备维修率对冷、热贮备系统中维修人员稳态忙期概率的影响Fig.5 Impact of repair rates for the working device on steady-state probability of repairmen busy for cold,hot-standby system

图6 运行设备和温贮备设备的维修率对温贮备系统中维修人员稳态忙期概率的影响Fig.6 Impact of repair rates for the working and warm-standby devices on steady-state probability of repairmen busy for warm-standby system

图7 设备维修率对冷、热贮备系统稳态平均维修次数的影响Fig.7 Impact of repair rate on mean repair number of the cold,hot-standby systems in steady-state

图8 运行设备的维修率和温贮备设备的失效率对系统稳态平均维修次数的影响Fig.8 Impact of repair rate of the working device and failure rate of the warm-standby device on repair number of the system in steady-state

由图5 可知,在参数β的取值范围内变化时,均小于.说明以维修人员稳态忙期概率为目标时,算法1 输出是: 冷贮备是最优贮备模型.由图6 可知,随β,β1的增大呈非线性减小.从数值计算结果可知: 当β取值相同时,总成立.说明在相同的运行设备维修率下,算法1输出依然是: 冷贮备是最优贮备模型.

5.1.3 以系统稳态平均维修次数为目标的实例分析

参数λ,λ1,β,β1,γ,σ取值与第5.1.1 节相同,系统性能指标为系统稳态平均维修次数.将这些参数代入算法1.其计算结果如表5 所示.

表5 系统稳态平均维修次数Table 5 Mean repair number of the system in steady-state

5.2 以系统经济效益为目标的实例分析

根据系统应用案例中的历史财务数据和历史维修费用记录,给出三个模型下净收益中费用的合理范围: 设c0,c4,c7∈ [1000,5000] (元/h),c1,c5,c8∈[300,500] (元/h),c2,c6,c9∈[300,700] (元/h).实际上,冷贮备系统激活期间的停机对于不同行业的生产制造企业带来的经济损失或产生的费用大相径庭、难以估计.但根据使用该系统的某生产企业的停机记录,停机费用的合理范围为:c3∈[500,1000](元/h),系统安装费用的合理范围为:I ∈[100,300](元/h).

5.2.1 以系统单位时间内运行收益为研究对象

令参数λ,λ1,β,β1,γ,σ取值与第5.1.1 节相同,令参数c1=400,c2=500,c3=800,c5=100,c6=200,c8=300,c9=500,I=200,c0,c4,c7∈[1000,5000].将以上参数代入算法2,其计算结果如下.

对于情况a),化简后最终不等式为

该不等式在∀c0,c4,c7∈[1000,5000] 取值范围内有解,即 Θ1≥max(Θ2,Θ3)成立,此时算法2输出结果是: 冷贮备是最优贮备模型.

对于情况b),化简后的最终不等式为

该不等式在∀c0,c4,c7∈[1000,5000] 取值范围内有解,即 Θ2≥max(Θ1,Θ3)成立,此时算法2输出结果是: 温贮备是最优贮备模型.

对于情况c),化简后最终不等式为

该不等式在∀c0,c4,c7∈[1000,5000] 取值范围内有解,即 Θ3≥max(Θ1,Θ2)成立,此时算法2输出结果是: 热贮备是最优贮备模型.

5.2.2 以系统单位时间内设备维修费用为研究对象

令c0=3000,c4=3000,c7=3000,c1,c5,c8∈[300,500],其他参数与第5.2.1 节相同.将以上参数代入算法2,其计算结果如下.

对于情况a),化简后的最终不等式为

该不等式在∀c1,c5,c8∈[300,500] 取值范围内恒成立,即 Θ1≥max(Θ2,Θ3)恒成立,此时算法2输出结果是: 冷贮备是最优贮备模型.

对于情况b)和情况c),化简后分别得最终不等式为

然而,在∀c1,c5,c8∈[300,500] 取值范围内,以上两个不等式均无解.即,Θ2≥max(Θ1,Θ3)和Θ3≥max(Θ1,Θ2)均不成立,此时算法2 无输出.说明以系统单位时间内设备维修费用为研究对象时,无论参数如何取值,冷贮备均是最优贮备模型.

5.2.3 以单位时间内支付给维修人员的费用为研究对象

令c0=3000,c4=3000,c7=3000,c2,c6,c9∈[300,700],其他参数取值与第5.2.1 节相同.将以上参数代入算法2,其计算结果如下.

对于情况a),化简后的最终不等式为

该不等式在∀c2,c6,c9∈[300,700] 取值范围内恒成立,即 Θ1≥max(Θ2,Θ3)恒成立.此时算法2输出结果是: 冷贮备是最优贮备模型.

对于情况b)和情况c),化简后分别得到的最终不等式为

然而,在∀c2,c6,c9∈[300,700] 取值范围内,以上两个不等式均无解,即 Θ2≥max(Θ1,Θ3)和Θ3≥max(Θ1,Θ2)均不成立.此时算法2 无输出.说明以系统单位时间内支付给维修人员费用为研究对象时,无论参数如何取值,冷贮备均是最优贮备模型.

6 结束语

针对选择哪种贮备模型才能使双贮备系统实现性能和经济效益最优的问题,本文创新性地提出了双贮备系统贮备模型优化选择算法.通过分析系统状态及半Markov 核函数分别建立了系统冷/温/热贮备模型下的更新方程组,利用Laplace、Laplace-Stieltjes 变换技术和Abel 定理求得了系统稳态可用度、维修人员稳态忙期概率和系统稳态平均维修次数的系统性能指标,并给出了系统单位时间内净收益的目标函数,之后通过模型对比分析给出了分别以系统性能指标和经济指标为目标的系统贮备模型优化选择算法.最后以实际的国产双贮备控制系统作为研究对象,对所提算法进行实例分析,实例结果表明所提算法能够有效地确定系统在不同条件下的最优贮备模型.本文是在系统确定参数或确定参数变化范围的情况下进行研究的.然而对于某些实际的工业现场,现场环境复杂,系统部分参数无法测量,这些参数属于不确定参数.对具有不确定参数的双贮备系统如何进行分析、建模并给出贮备模型的优化选择算法是下一步重点研究的问题.

附录A

对温贮备模型下系统所有半Markov 核函数进行分析如下.

1)当系统处于S0时,如果其中一个温贮备设备先于运行设备失效,则系统转移至S1.此时有

反之,如果运行设备先于温贮备设备失效,则系统转移至S2.此时有

2)当系统处于S1时,此时有下述几种情况:

a)如果失效设备在运行设备和温贮备设备失效前已修好,则系统转移至S0.此时有

b)如果温贮备设备在失效设备修好前失效且在该失效时刻运行设备依然运行,则系统转移至S3,然而由于S3是非再生状态,因此当系统进入S3后会再次转移至哪些状态需要分别考虑.

c)如果维修设备在运行设备失效前已修好,则系统由S3转移至S1,此时有

d)如果运行设备在失效设备修好前失效,则系统将由S3再次转移至S5,此时有

e)当系统转移至S5后,正在维修的设备修好后,系统将转移至S7.此时有

当系统处于S1时,如果运行设备在维修设备修好前失效且在失效时刻温贮备设备没有失效,则系统转移至S4.由于S4是非再生状态,因此系统由S4转移至哪些状态需要分别考虑.

f)如果失效设备在运行设备失效前已修好,则系统将由S4转移至S2.此时有

g)反之,如果运行设备在失效设备修好前失效,则系统将由S4转移至S6.此时有

h)当系统转移至S6后,正在维修的设备修好后,系统将转移至S7.此时有

3)当系统处于S2时,此时有下述几种情况:

a)如果维修设备在运行设备和温贮备设备失效前已修好,则系统转移至S0.此时有

b)如果温贮备设备在维修设备修好前失效,且在失效时刻运行设备正常运行,则系统转移至S10,由于S10是非再生状态,因此系统由S10转移至哪些状态需要分别考虑.

c)如果维修设备在运行设备失效前已修好,则系统由S10转移至S1.此时有

d)反之,如果运行设备在维修设备修好前失效,则系统由S10转移至S11.此时有

e)当系统转移至S11后,维修设备修好后,系统转移至S12.此时有

当系统处于S2时,如果运行设备在维修设备修好前失效且在失效时刻温贮备设备没有失效,则系统转移至S9.由于S9是非再生状态,因此由S9转移至哪些状态需要分别考虑.

f)如果维修设备在运行设备失效前已修好,则系统由S9转移至S2.此时有

g)如果运行设备在维修设备修好前失效,则系统由S9转移至S8.系统处于S8后,维修设备修好后,系统由S8转移至S7.此时有

4)当系统处于S7时,此时有下述几种情况:

a)如果正在维修的设备在运行设备失效前已修好,则系统转移至S2.此时有

b)反之,如果运行设备在维修设备修好前失效,则系统转移至S6.系统处于S6后,当维修设备修好后,系统由S6转移至S7.此时有

5)当系统处于S12时,此时有下述几种情况:a)如果维修设备在运行设备失效前已修好,则系统转移至S2,此时有

b)反之,如果运行设备在维修设备修好前失效,则系统转移至S6.系统处于S6后,当维修设备修好后,系统由S6转移至S7.此时有

附录B

对温贮备模型在所有再生状态的平均逗留时间进行分析如下.

1)从系统进入S0开始(t=0),经过时间t后,如果运行设备和温贮备设备均未失效,则有

2)从系统进入S1开始(t=0),经过时间t后,如果运行设备和温贮备设备没有失效,且正在维修的设备没有修好,则有

3)从系统进入S2开始(t=0),经过时间t后,如果运行设备和温贮备设备没有失效,且正在维修的设备没有修好,则有

4)从系统进入S7开始(t=0),经过时间t后,如果运行设备没有失效且正在维修的设备没有修好,则有

5)从系统进入S12开始(t=0),经过时间t后,如果运行设备没有失效且正在维修的设备没有修好,则有

猜你喜欢
稳态概率状态
可变速抽水蓄能机组稳态运行特性研究
第6讲 “统计与概率”复习精讲
碳化硅复合包壳稳态应力与失效概率分析
第6讲 “统计与概率”复习精讲
概率与统计(一)
概率与统计(二)
电厂热力系统稳态仿真软件开发
元中期历史剧对社会稳态的皈依与维护
状态联想
生命的另一种状态