杨延超
ChatGPT引爆了全球大模型产业发展。大模型通过大数据、大算力和大算法的结合,实现了对世界的深度理解。大数据提供了丰富的知识,大算力使得模型能够快速有效地学习这些知识,大算法则帮助模型优化参数,提取有用信息。这三个维度的结合使得大模型具有强大的理解力,能够更好地理解和生成人类语言,处理更复杂的任务,如文本理解、图像识别等,从而极大地提升了AI的能力。大模型时代,也催生了人工智能领域一系列全新知识产权问题。
知识产权立法对于人工智能产业的发展具有重要的意义,不仅可以保护创新者的权益,激励产业的投资和创新,也可以推动技术的进步,促进知识的传播。同时,也需要兼顾社会安全和社会伦理的考量,以保护社会的安全和伦理。
人工智能的专利布局总体而言,主要集中在一些发达经济体,包括美国、日本、中国、欧盟等国家和地区。这些国家和地区在人工智能技术的研发和应用上都有着深厚的积累和优势。然而,专利布局的数量并不能完全代表技术的质量和领先度。一个技术的应用,它的用户体验,以及市场上它最终的实践情况,才能更科学地检验它的技术领先度。
在人工智能的各个子领域中,不同的国家和地区具有不同的技术优势。例如,在工业机器人领域,日本、德国、瑞士的专利布局就比较明显。在自然语言处理领域,美国和中国的专利布局也比较凸显。在无人驾驶领域,中国和美国的专利布局近年来发展迅速。这些专利布局反映了各个国家在这些领域的技术优势和发展方向。人工智能技术已经广泛应用于生活、医疗、金融等多领域。例如,工业机器人广泛应用于生产实践中;自然语言处理技术,如ChatGPT,被广泛应用于对话和交流中;无人驾驶技术正在逐步改变我们的出行方式。这些应用都有着相关的专利布局,反映了人工智能技术的广泛应用和深远影响。
在这里要特别强调一点,对人工智能的保护,专利布局从某种意义上只能代表一个数量,它并不能完全代表着质量,尤其是在很多技术领域中,可能后期你虽然有庞大的专利数量,但不代表着你占领了这个领域的核心技术,这是要特别关注的。一个技术的应用,它的用户体验,以及市场上它最终的实践情况,以此来检验它的技术领先度更科学。还有一点需特别强调的是,隐藏在专利布局背后的,是商业秘密。比如说这次的ChatGPT,它的论文也没公布,具体的算法也没公布。这背后,至少目前它是技术秘密的状态。它在1.0版和2.0版公布了论文,但是到目前3.5版之后,它就没有公布论文,它是通过这种商业秘密的方式来保护。所以对未来的AI时代,我们要考察技术领先度应该是多维的,而不应该仅仅是从专利布局的数量来单维考察。
在专利布局背后,还隐藏着商业秘密。例如,ChatGPT在1.0版和2.0版的时候公布了论文,但在3.5版之后,它没有公布论文,而是通过保护技术秘密的方式来保护自己的技术优势。这种方式在未来的AI时代可能会越来越常见。此外,一些公司可能会选择在关键技术上申请专利,而在其他非核心技术上选择开源,以此来平衡保护技术秘密和推动技术发展的需要。
在AI领域,开源、专利保护和商业秘密是三种常见的选择,它们之间的关系和选择取决于公司的战略和市场环境。
开源是一种以共享和协作为基础的开发模式,它可以推动技术进步和社区发展。例如,Facebook(现Meta)已经将其最新的大型语言模型Llama 2開源,供研究和商业使用。开源模型可以帮助开发者和研究者更好地理解和利用AI技术,同时也能吸引更多的人才和资源参与到项目中来,推动技术的进步和社区的发展。
专利保护是一种法律手段,通过获得专利权来保护技术成果和市场份额。专利保护可以防止他人在一定期限内未经许可使用、销售或进口专利产品,从而保护发明者的利益。然而,专利的申请和维护成本较高,且专利信息公开可能会暴露技术细节。
商业秘密是一种通过保密措施来保护核心技术和竞争优势的方式。例如,OpenAI在发布GPT-3后,没有公开其详细的技术细节和算法,而是选择通过商业秘密的方式来保护其技术优势。商业秘密没有时间限制,只要信息保密,就可以一直保护。然而,一旦秘密泄露,就可能无法获得法律保护。
随着AI技术的发展和应用,开源、专利保护和商业秘密这三种方式可能会并存和互补。一方面,开源可以推动AI技术的进步和社区的发展,另一方面,专利保护和商业秘密可以保护公司的技术成果和市场份额。具体选择哪种方式,需要根据公司的战略、技术特性和市场环境来决定。
未来,我们可能会看到更多的混合策略出现。例如,一些公司可能会选择在关键技术上申请专利,而在其他非核心技术上选择开源,以此来平衡保护技术秘密和推动技术发展的需要。同时,随着AI技术的发展,一些新的技术领域可能会出现,这些领域可能会有新的保护方式出现,例如,数据保护和算法保护可能会成为新的保护方式。
此外,在涉及技术保护问题上,人工智能公司也会在选择商业秘密还是专利保护问题上进行平衡。一般通过产品可以复现技术,会申请专利,这样权利人就获得了专利的独占权,可以有效防止产品上市后,其他商家通过分析产品复现技术。在这种情况下,商业秘密是无意义的,因为产品一旦上市,商业秘密也就不存在了。然而,像对话类机器人,产品通过网络使用,在使用中对底层算法是无法复现的,权利人也就不担心产品上市后复现,这样的话,一般会通过商业秘密的方法保护。当然,随着技术迭代,落后的技术会逐步开源,最先进的技术会通过商业秘密进行保护的。
人工智能大模型的发展,对版权法的挑战与变革将是全面而深远的。知识产权法基本上解决了三个核心问题:创作者(发明者)身份的确定,智力成果的定义,以及如何保护。然而,人工智能的发展将对这三个问题提出新的挑战和解决方案。下面以版权为例进行讨论。
首先,作者身份的确定问题。一般而言,作者是一位具有专门技能的艺术家或者创作者,往往从很小的时候就开始学习和磨炼这些技能。然而,大模型的出现可能会对我们对“作者”的定义提出全新的要求。它要求我们重新考虑独创性的定义,并为此设定全新的标准。这不仅关乎版权法的问题,也涉及教育的问题,包括我们应该如何培养孩子的技能。
其次,作品的定义问题。传统上,作品的存在和价值在很大程度上取决于它的可复制性,复制权是版权中最重要的一种权利。然而,大模型的出现和发展可能会改变这种情况。未来的作品可能不再是千篇一律的复制品,而是可以根据每个人的需求进行个性化调整的产品。预测未来,大模型的发展可能会使得每个人观看的电视剧、玩的游戏都具有独一无二的特性。这种转变在未来都将实现。
最后,版权的保护方法。过去,我们主要依靠法律诉讼来保护版权。然而,大模型的出现使得技术性的保护方法成为可能。在这种情况下,我们不再需要通过频繁的法律修订来保护权利,而是可以依赖于技术来实现版权的保护。相比较法律保护,技术保护可以极大节省权利人保护权利的成本,同时极大提升保护效果。
总的来说,大模型的出现和发展将对版权法提出全新的挑战,也将为版权法的改革提供全新的可能性。我们需要密切关注这一发展趋势,并在此基础上进行适应性的改革。
1.对人工智能产品的专利保护有利于激励产业投资与创新。
人工智能产品的核心往往是与算法有关。然而,算法在现行的专利法中,可能会被纳入到智力活动规则的范畴,从而不受专利保护。这种情况下,人工智能产品的创新和投资可能会受到阻碍。因此,我们需要重新审视专利法,区分算法类产品与纯粹的智力活动规则之间的区别,制定更科学的专利保护范畴。这样,不仅可以保护创新者的权益,也可以激励更多的投资和创新。
在现实中,许多人工智能产品的创新都是基于算法的。例如,深度学习、神经网络等技术,都是基于复杂的算法。这些算法的创新,为人工智能产品的发展提供了强大的动力。然而,如果这些算法不能得到专利保护,那么创新者可能会失去创新的动力,因为他们无法从他们的创新中获得经济回报。因此,对人工智能产品的专利保护,对于激励产业投资与创新具有重要的意义。
2.人工智能时代,做好利益平衡,有利于推动技术进步。
许多人工智能技术的发展都是基于数据共享、技术共享和模型共享的。例如,许多深度学习的模型,都是基于公开的数据集进行训练的。这些数据集的共享,为深度学习的发展提供了强大的支持。由此,就需要在保护数据私有性和推动技术进步之间找到一个平衡。在人工智能时代,数据共享、技术共享、模型共享成为了一种趋势。这不仅可以推动技术的进步,也可以促進知识的传播。然而,这也需要我们在保护创新的同时,合理设定权利限制,如合理使用、法定许可等制度。这样,我们既可以保护创新者的权益,也可以让技术成果、文学艺术得到极大的传播与交流。
3.人工智能产业发展还要兼顾社会安全和社会伦理考量。
人工智能的发展,不仅仅是技术的问题,更是社会安全和社会伦理的问题。因此,知识产权法也需要划出红线,对于违反社会安全和社会伦理的人工智能产品,我们需要坚决说不。这样,我们既可以保护社会的安全,也可以维护社会的伦理。在现实中,人工智能的发展已经引发了许多社会安全和社会伦理的问题。例如,人工智能的决策可能会引发歧视问题,人工智能的自主性可能会引发法律责任分配问题,相关问题也都有必要在人工智能的知识产权立法中进行充分的考虑。
(摘自8月2日《经济参考报》。作者为中国社科院法学所研究员、科技与法研究中心主任)