鄂尔多斯盆地长7烃源岩三环萜烷的差异性、成因及其油源意义

2023-09-07 09:34王爱国李春雨井向辉蒲磊杨泽光
关键词:鄂尔多斯盆地烃源岩

王爱国 李春雨 井向辉 蒲磊 杨泽光

摘要:鄂爾多斯盆地长7烃源岩横向上的地化差异性不清,导致远离湖盆中心的油藏油源不明确,存在“近源”和“远源”的争论。选择对沉积环境响应灵敏的C20-C21-C23三环萜烷(TT)对盆内的长7烃源岩开展研究。结果表明:长7泥页岩的C20-C21-C23TT存在C20C23TT(Ⅱ 类)和C20>C21

关键词:鄂尔多斯盆地; 延长组; 长7; 烃源岩; 三环萜烷

中图分类号:P 168.1   文献标志码:A

引用格式:王爱国,李春雨,井向辉,等.鄂尔多斯盆地长7烃源岩三环萜烷的差异性、成因及其油源意义[J].中国石油大学学报(自然科学版),2023,47(4):48-59.

WANG Aiguo, LI Chunyu, JING Xianghui, et al. Difference, origin and oil source significance of tricyclic terpenes in Chang 7 source rocks in Ordos Basin[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(4):48-59.

Difference, origin and oil source significance of tricyclic terpenes in

Chang 7 source rocks in Ordos Basin

WANG Aiguo1,2, LI Chunyu1,2, JING Xianghui3, PU Lei3, YANG Zeguang1,2

(1. Department of Geology in Northwest University, Xian 710069, China;

2.State Key Laboratory of Continental Dynamics in Northwest University, Xian 710069, China;

3.Research Institute of Exploration and Development, PetroChina Changqing Oilfield Company, Xian 710018, China)

Abstract:The horizontal geochemical difference of the Chang 7 source rocks in Ordos Basin is not clear, which leads to the unclear understanding of oil source for the oils far away from the center of the lake basin. And there is a debate between “adjacent source ” and “ distant source”. C20-C21-C23 tricyclic terpane (TT) with sensitive response to sedimentary environment was used to study the Chang 7 source rock in the basin. The results show that there are three distribution patterns of C20-C21-C23 TT in Chang 7 shale : C20 < C21 < C23TT (type Ⅰ), C20 < C21 > C23TT (type Ⅱ) and C20 > C21 < C23TT (type Ⅲ ). The type Ⅰ shale is developed in the deep lake, and overlaps with areas of the tuff deposition and hydrothermal fluid activity. The total organic carbon ( TOC ) is high, and it is a high-quality source rock. The type Ⅱ shale is distributed in the northern deep lake and shallow lake areas, and the TOC is lower than the type I, which is an effective source rock. The difference in the input ratio of plankton and higher plants leads to the difference in the distribution pattern of C20-C21-C23 TT. The origin of type I is related to plankton dominated input, while type Ⅱ and Ⅲ patterns have more higher plant input. Based on oil-source correlation using C20-C21-C23TT distribution patterns, the crude oils in Jingbian area is originated from Chang 7 high quality source rocks in the central basin, supporting the accumulation model that the oils migrated from a distant source.

Keywords:Ordos Basin; Yanchang Formation; Chang 7; source rocks; tricyclic terpane

三环萜烷(TT)系列化合物在原油和烃源岩抽提物中广泛分布[1],碳数多为C19~C29 [2]。TT具有较强的热稳定性和抗生物降解能力[3-4],且对沉积环境和有机质输入[2, 5-7]响应灵敏而被广泛应用于油源对比研究[8-9]。前人研究[10]发现,当热演化程度小于0.2%Ro时,C20-C21-C23TT丰度分布受控于母质类型的原生差异。成熟度和排烃作用对其影响较小,因而是很好的生源指标。前人就利用C20-C21-C23TT在准噶尔盆地成功地解决多源、混源成藏体系中油气来源与混合问题[8-9]。鄂尔多斯盆地中生界原油被认为来自延长组长7段、长9段及延长组其他层段的泥页岩[11-13]。对于这种垂向上的烃源差异性,前人已通过生物标志化合物进行了有效的界定[14-15]。然而对于同层烃源岩的横向差异性研究较少。如长7主力烃源岩,前人取得大量诸如烃源岩品质[16]、地化特征[17]、空间分布[18-19]、沉积环境[20-21]等方面的认识,但鲜有长7烃源岩横向差异性的报道,导致离湖盆中心较远的油藏存在“近源”和“远源”的争议[17,22-24]。即油源究竟是原地的长7烃源岩,还是湖盆中心的长7烃源岩。为此,笔者利用C20-C21-C23TT对鄂尔多斯盆地长7烃源岩开展横向差异性研究,探讨这种地化差异性的成因及其对靖边地区石油来源的指示。

1 区域地质背景

鄂尔多斯盆地(图1(a))上三叠统延长组为典型的陆相湖盆沉积,自上而下被分为长1至长10段[25]。长7段沉积于湖盆鼎盛时期,以深湖—半深湖、淡水—微(半)咸水沉积环境为主[21-23],并伴随着火山热液活动[26-28](图1(b))。沉积有机质在湖盆中心的长7段内富集[29],形成了一套以暗色泥岩和黑色页岩为主的烃源岩层,局部地区累加厚度大于40  m[18](图1(b))。暗色泥岩和黑色页岩的平均烃源岩残余有机碳含量(TOC)分别为3.74%和13.81%,有机质类型以Ⅰ-Ⅱ1型为主,整体处于成熟阶段[25]。

2 样品、数据与方法

从钻井岩心和野外露头采集5块长7烃源岩和3块长8烃源岩样品(表1)。从公开发表的文献中搜集了36组长7烃源岩的m/z 191色谱图、TOC、热解数据(表2)和142组长7烃源岩的生标数据。烃源岩样品点和部分数据点位置如图1(b)所示。另外,在陕北斜坡上(图1(b))采集了40个原油样品(层位涉及长7至延安组)和9个油砂样品(长6、长7段)。

按照国家标准(GB/T 19145-2003、GB/T 18602-2012)对烃源岩样品开展TOC和热解测试;按照行业标准(SY/T 5118-2005、SY/T 5119-2016)对烃源岩和油砂样品进行沥青抽提和族组分分离。使用热电TRACE 1300-ISQ QD 300气相色谱质谱联用仪按照国家标准(GB/T 18606-2017)对分离出的饱和烃开展了色谱-质谱测试,进而计算生标指标并划分C20-C21-C23TT丰度分布类型(表1)。文献中的C20-C21-C23TT分布样式由m/z 191色谱图读取(表2)。

3 长7烃源岩分布和地化特征

3.1 长7烃源岩分布范围

长7段烃源岩岩性主要为黑色页岩和暗色泥岩。黑色页岩的TOC普遍大于6%,生烃潜量S1+S2多大于20 mg/g,达到“极好”烃源岩级别,主要发育于深湖区的长73亚段[16,23](图1(b))。暗色泥岩的TOC普遍介于0.5%~10%,S1+S2多介于0~50 mg/g[16,23]。暗色泥岩的有机质丰度虽然差于黑色页岩,但仍含有“好—极好”级别的烃源岩。暗色泥岩在长7段各段均有分布,分布范围也扩大至浅湖区(图1(b))。廖青[16]通过确定有效烃源岩的TOC下限(TOC大于1.5%),将长7有效烃源岩分布范围的北界限定在盐池—安塞—延安一线。但最近的研究发现,在盐池—安塞—延安一线以北的靖边(表1)、安塞[42]、延长[43]地区仍然存在许多TOC大于1.5%的长7泥页岩。即长7有效烃源岩的分布范围实际上比图1(b)所示的范围还要大,可能涵盖整个长7浅湖区(图1(b))。

3.2 长7烃源岩地化特征和横向差异性

长7泥页岩的C20-C21-C23TT丰度分布样式存在明显差别,可分为C20C23TT(Ⅱ类,图2(b))(表1、2)。另外,两口井中的长7泥岩具有C20>C21

Ⅰ、Ⅱ类长7烃源岩的空间分布具有明显的规律(图4):Ⅰ类烃源岩主要分布在湖盆中心,分布区域与深湖区、凝灰岩分布区[28]、黑色页岩分布区基本一致;Ⅱ类烃源岩分布于浅湖区和环县—华池—富县一线以北的深湖区。也就是说,长7烃源岩的C20-C21-C23TT丰度分布样式在陕北斜坡和湖盆中心存在明显差异:在陕北斜坡, C20-C21-C23TT丰度分布样式单一,以Ⅱ类为主;在湖盆中心北部区域,Ⅰ类与Ⅱ类分布样式均有,二者在纵向上是共存的。以G135井为例,该井长72烃源岩C20-C21-C23TT分布样式为Ⅰ类(表2),而下伏的长73烃源岩则表现为Ⅱ类(表1);在湖盆中心南部区域,C20-C21-C23TT豐度分布样式也比较单一,以Ⅰ类为主。

长7烃源岩在湖盆中心和陕北斜坡间的地化差异性还体现在姥植比(Pr/Ph)、C27-C28-C29规则甾烷相对含量等示源指标上。如图5(数据引自本研究和文献[14]、[16]、[23]、[42]~[43])所示,湖盆中心长7烃源岩的Pr/Ph主要介于0.5~1.3,αααRC27/C29甾烷多大于1.0,而陕北斜坡长7烃源岩的Pr/Ph主要为1.0~2.2,αααRC27/C29甾烷多小于1.0。与湖盆中心相比,陕北斜坡长7烃源岩形成于偏氧化的沉积环境,存在较多的高等植物输入。

4 三环萜烷分布差异性成因和意义

4.1 成熟度对C20-C21-C23TT分布样式的影响

部分学者认为C23/C21TT是成熟度的良好指标,即随成熟度增大,C23/C21TT比值逐渐减小[4,44]。然而,陈哲龙等[10]通过模拟实验认为,成熟度在过熟阶段才对C20-C21-C23TT分布样式产生显著影响。一方面,鄂尔多斯盆地中生界的热演化程度还没有达到过熟阶段。另一方面,C23/C21TT与成熟度参数(Ts/Tm、C29甾烷ββ/(ββ+αα)、C30重排藿烷/C30藿烷,C29Ts /C30藿烷)相关图(图6)也证实,长7烃源岩和原油样品的C23/C21TT与成熟度参数无明显相关性。这说明,成熟度并不会影响本区内长7烃源岩和原油的C20-C21-C23TT分布样式。

4.2 三环萜烷分布差异性成因

TT的丰度分布样式与沉积环境关系密切。海相烃源岩往往具有C23TT优势[3, 10],表现为Ⅰ类分布样式;淡水湖相烃源岩往往具有C21TT优势[3],与Ⅱ类分布样式相对应;陆相烃源岩常具有C19TT、C20TT优势[45-46],故而呈C20>C21>C23TT的样式(本文中将此样式命名为Ⅳ类)。另外还发现,海陆过渡相烃源岩常具有Ⅲ类分布样式。典型海相沉积有机质主要来源于浮游生物,而典型陆相沉积有机质来自高等植物[47]。因此,Ⅰ类和Ⅳ类分布样式很可能分别代表了浮游生物主导型和高等植物主导型的生源输入。

张水昌等[48]曾对张家口地区的新元古代海相油页岩(距今900~873 Ma,(0.6%~0.7%)Ro)开展研究(该油页岩排除了高等植物的输入),发现了两类油页岩:一类以蓝藻和绿藻为主,C20-C21-C23TT为Ⅰ类分布样式;另一类则以底栖宏观红藻为主,C20-C21-C23TT分布样式为Ⅳ类。这些发现进一步证实,浮游生物应该是Ⅰ类分布样式的生源。除高等植物以外,底栖宏观藻类可能是Ⅳ类分布样式的另一个生源。然而,底栖宏观藻类由于生产力较低,被认为对生烃贡献不大[47]。对油气生成贡献较大的生源主要为浮游生物、高等植物和细菌[47]。细菌被认为是霍烷的生物来源[49],目前尚未有研究显示它们与TT的生源有关。因此Ⅰ类分布样式对应于浮游生物主导型的生源输入,而Ⅳ类分布样式对应于高等植物主导型的生源输入。

对于海陆过渡环境和淡水湖相,其沉积有机质通常来自浮游生物和高等植物的混合输入[47]。即这些沉积有机质的C20-C21-C23TT分布样式(Ⅱ、Ⅲ类)应该是Ⅰ类和Ⅳ类分布样式的混合。经数值模拟计算, Ⅱ类和Ⅲ类分布样式确实可由Ⅰ类和Ⅳ分布样式按不同的比例混合而成(图7)。也就是说,浮游生物和高等植物混合输入比例的不同是形成4类C20-C21-C23TT分布样式的原因。由此推断,分布于深湖区的 Ⅰ 类长7烃源岩的生源以浮游生物为主,这与前人通过显微组分或C27-C28-C2s9规则甾烷研究取得的认识[16,23]一致。相较而言,Ⅱ 类、Ⅲ 类长7泥页岩的生源输入中,高等植物的比重明显增大。

长7段沉积期,受印支-秦岭碰撞造山运动的影响,鄂尔多斯盆地南部火山活动和湖底热液活动强烈[26,29,50]。前人认为,火山灰和热液流体的注入为湖泊带来了大量营养物质,促进了湖泊内藻类等浮游生物的繁盛和优质烃源岩发育[51-52]。需要注意的是,Ⅰ類长7烃源岩的分布区与凝灰岩发育区恰好高度重叠(图4)。特别地,在环县—华池—富县一线以南的深湖区,凝灰岩最为发育,热液活动最为强烈,而Ⅰ类C20-C21-C23TT分布样式也最为发育(图4)。由此推断,在构造活动较弱的时期以及火山灰和热液流体影响弱的区域,湖水中浮游生物输入比例降低(或者高等植物输入比例增大),导致了Ⅱ类、Ⅲ类长7泥页岩的形成。

4.3 油源指示意义

经油源对比,陕北斜坡上的油样和含油砂岩抽提物全部来自长7烃源岩(图8(a),其中长7和长9烃源岩范围分别参考文献[14]、[16]、[23]、[31]~[32]、[40]、[53]~[55];长8烃源岩范围参考文献[54])。这些原油的TT分布样式以Ⅰ类为主,存在少量Ⅱ类,未见Ⅲ类(图9,其中优质烃源岩范围由Ⅰ类长7烃源岩分布范围和深湖区范围确定)。此外这些原油的Pr/Ph和αααRC27/C29甾烷指标也与湖盆中心长7烃源岩的指标比较接近(图8)。因此陕北斜坡上长7以浅的大部分原油来自湖盆中心的Ⅰ类长7烃源岩,小部分来自Ⅱ类长7烃源岩。也就是说,Ⅰ类长7烃源岩是本区的主力烃源岩,Ⅱ类长7烃源岩为次要烃源岩。

值得注意的是,在远离湖盆中心的靖边地区,Y76井长72暗色泥岩的TOC为3.38%,S1+S2为17.24 mg/g,属“最好”级别生油岩(表1),表明该地区的长7段泥页岩仍是潜在的烃源岩。然而该区原油的C20-C21-C23TT分布样式(图9)、Pr/Ph和αααRC27/C29甾烷指标(图8)与湖盆中心长7烃源岩的指标一致,而与该区甚至陕北斜坡潜在长7烃源岩的类型(图8、9)明显不同,因而排除了原地长7油源的贡献,油源应该为湖盆中心的优质烃源岩。

5 结 论

(1)鄂尔多斯盆地长7泥页岩的C20-C21-C23三环萜烷(TT)丰度存在3种分布样式:C20C23TT(Ⅱ类)和C20>C21

(2)浮游生物和高等植物输入比例的不同是导致C20-C21-C23TT分布样式多样化的原因。Ⅰ类分布样式与浮游生物主导型输入有关。相较于Ⅰ类,Ⅱ、Ⅲ类分布样式与较多的高等植物输入有关。

(3)C20-C21-C23TT分布样式的差异性揭示陕北斜坡上长7段至延安组的原油主要来自湖盆中心的长7优质烃源岩,支持了靖边地区油藏“远源”成藏的观点。

参考文献:

[1] DE GRANDE S M B, AQUINO NETO F R, MELLO M R. Extended tricyclic terpanes in sediments and petroleums[J]. Organic Geochemistry,1993,20(7):1039-1047.

[2] SAMUEL O J, KILDAHL-ANDERSEN G, NYTOFT H P, et al. Novel tricyclic and tetracyclic terpanes in Tertiary deltaic oils:structural identification, origin and application to petroleum correlation[J]. Organic Geochemistry, 2010,41(12):1326-1337.

[3] 肖洪,李美俊,杨哲,等.不同环境烃源岩和原油中C19~C23三环萜烷的分布特征及地球化学意义[J].地球化学,2019,48(2):161-170.

XIAO Hong, LI Meijun, YANG Zhe, et al. Distribution patterns and geochemical implications of C19~C23 tricyclic terpanes in source rocks and crude oils occurring in various depositional environments[J]. Geochemica, 2019,48(2):161-170.

[4] FARRIMOND P, BEVAN J C, BISHOP A N. Tricyclic terpane maturity parameters:response to heating by an igneous intrusion[J]. Organic Geochemistry,1999,30(8):1011-1019.

[5] SIMONEIT B R T, SCHOELL M, DIAS R F, et al. Unusual carbon isotope compositions of biomarker hydrocarbons in a Permian tasmanite[J]. Geochimica et Cosmochimica Acta,1993,57(17):4205-4211.

[6] AQUINO NETO F R, RESTLE A, CONNAN J, et al. Novel tricyclic terpanes (C19, C20) in sediments and petroleums[J]. Tetrahedron Letters,1982,23(19):2027-2030.

[7] PHILP R P, GILBERT T D. Biomarker distributions in Australian oils predominantly derived from terrigenous source material[J]. Organic Geochemistry,1986,10(1/2/3):73-84.

[8] CAO Jian, ZHANG Yijie, HU Wenxuan, et al. The Permian hybrid petroleum system in the Northwest margin of the Junggar Basin, northwest China[J]. Marine and Petroleum Geology, 2005,22(3):331-349.

[9] CHEN Jianping, LIANG Digang, WANG Xulong, et al. Mixed oils derived from multiple source rocks in the Cainan Oilfield, Junggar Basin, Northwest China(I):genetic potential of source rocks, features of biomarkers and oil sources of typical crude oils[J]. Organic Geochemistry,2003,34(7):911-930.

[10] 陳哲龙,柳广弟,卫延召,等.准噶尔盆地玛湖凹陷二叠系烃源岩三环萜烷分布样式及影响因素[J].石油与天然气地质,2017,38(2):311-322.

CHEN Zhelong, LIU Guangdi, WEI Yanzhao, et al. Distribution pattern of tricyclic terpanes and its influencing factors in the Permian source rocks from Mahu Depression in the Junggar Basin[J]. Oil & Gas Geology,2017,38(2):311-322.

[11] QU Hongjun, YANG Bo, GAO Shengli, et al. Controls on hydrocarbon accumulation by facies and fluid potential in large-scale lacustrine petroliferous basins in compressional settings:a case study of the Mesozoic Ordos Basin, China[J]. Marine and Petroleum Geology,2020,122:104668.

[12] 刚文哲,高岗,韩永林,等.鄂尔多斯盆地胡尖山地区延长组烃源岩分析[J].中国石油大学学报(自然科学版),2010,34(6):50-55.

GANG Wenzhe, GAO Gang, HAN Yonglin, et al. Analysis of source rock of Yanchang formation in Hujianshan area,Ordos Basin [J]. Journal of China University of Petroleum(Edition of Natural Science),2010,34(6):50-55.

[13] 白玉彬,赵靖舟,高振东,等.鄂尔多斯盆地杏子川油田长9烃源岩特征及油气勘探意义[J].中国石油大学学报(自然科学版),2013,37(4):38-45.

BAI Yubin, ZHAO Jingzhou, GAO Zhendong, et al. Characteristics of Chang 9 member source rocks and its significance of hydrocarbon exploration in Xingzichuan Oilfield,Ordos Basin[J]. Journal of China University of Petroleum(Edition of Natural Science),2013,37(4):38-45.

[14] 董麗红,杜彦军,李军,等.鄂尔多斯盆地中部延长组烃源岩生物标志化合物特征[J].西安科技大学学报,2018,38(4):604-610.

DONG Lihong, DU Yanjun, LI Jun, et al. Biomarker characteristics of hydrocarbon source rocks of Yanchang Formation in central Ordos Basin[J]. Journal of Xian University of Science and Technology,2018,38(4):604-610.

[15] 杨亚南,周世新,李靖,等.鄂尔多斯盆地南缘延长组烃源岩地球化学特征及油源对比[J].天然气地球科学,2017,28(4):550-565.

YANG Yanan, ZHOU Shixin, LI Jing, et al. Geochemical characteristics of source rocks and oil-source correlation of Yangchang Formation in southern Ordos Basin,China[J]. Natural Gas Geoscience,2017,28(4):550-565.

[16] 廖青.鄂尔多斯盆地长7段有效烃源岩及其控油作用[D].北京:中国石油大学(北京),2019.

LIAO Qing. Effective source rock and its control to crude oil in the Chang 7 Member of the Ordos Basin[D]. Beijing:China University of Petroleum(Beijing),2019.

[17] 韩载华,赵靖舟,孟选刚,等.鄂尔多斯盆地三叠纪湖盆东部“边缘”长7段烃源岩的发现及其地球化学特征[J].石油实验地质,2020,42(6):991-1000.

HAN Zaihua, ZHAO Jingzhou, MENG Xuangang, et al. Discovery and geochemical characteristics of Chang 7 source rocks from the eastern margin of a Triassic lacustrine basin in the Ordos Basin[J]. Petroleum Geology & Experiment,2020,42(6):991-1000.

[18] 付锁堂,姚泾利,李士祥,等.鄂尔多斯盆地中生界延长组陆相页岩油富集特征与资源潜力[J].石油实验地质,2020,42(5):698-710.

FU Suotang, YAO Jingli, LI Shixiang, et al. Enrichment characteristics and resource potential of continental shale oil in Mesozoic Yanchang Formation, Ordos Basin[J]. Petroleum Geology & Experiment,2020,42(5):698-710.

[19] 崔景伟,朱如凯,李森,等.坳陷湖盆烃源岩发育样式及其对石油聚集的控制:以鄂尔多斯盆地三叠系延长组长7油层组为例[J].天然气地球科学,2019,30(7):982-996.

CUI Jingwei, ZHU Rukai, LI Sen, et al. Development patterns of source rocks in depression lake basin and its controlling effect on oil accumulation:case study of the Chang 7 shale of the Triassic Yanchang Formation, Ordos Basin[J]. Natural Gas Geoscience,2019,30(7):982-996.

[20] 李文厚,刘溪,张倩,等.鄂尔多斯盆地中晚三叠世延长期沉积演化[J]. 西北大学学报(自然科学版), 2019, 49(4):605-621.

LI Wenhou, LIU Xi, ZHANG Qian, et al. Deposition evolution of Middle-Late Triassic Yanchang Formation in Ordos Basin[J]. Journal of Northwest University (Natural Science Edition),2019,49(4):605-621.

[21] 付金华,李士祥,徐黎明,等.鄂尔多斯盆地三叠系延长组长7段古沉积环境恢复及意义[J].石油勘探与开发,2018,45(6):936-946.

FU Jinhua, LI Shixiang, XU Liming, et al. Paleo-sedimentary environmental restoration and its significance of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China[J]. Petroleum Exploration and Development,2018,45(6):936-946.

[22] 張海,雷华伟,张涛,等.鄂尔多斯盆地靖边油田西部延9原油地球化学特征与油源[J].石油实验地质,2018,40(6):836-842.

ZHANG Hai, LEI Huawei, ZHANG Tao, et al. Geochemical characteristics of Yan 9 crude oil and oil-source correlation in western Jingbian Oil Field,Ordos Basin[J]. Petroleum Geology & Experiment,2018,40(6):836-842.

[23] XU Zhengjiang, LIU Luofu, LIU Benjieming, et al. Geochemical characteristics of the Triassic Chang 7 lacustrine source rocks, Ordos Basin, China:implications for paleoenvironment, petroleum potential and tight oil occurrence[J]. Journal of Asian Earth Sciences,2019,178:112-138.

[24] 赵靖舟,孟选刚,韩载华.近源成藏:来自鄂尔多斯盆地延长组湖盆东部“边缘”延长组6段原油的地球化学证据[J].石油学报,2020,41(12):1513-1526.

ZHAO Jingzhou, MENG Xuangang, HAN Zaihua. Near-source hydrocarbon accumulation:geochemical evidence of lacustrine crude oil from the member 6 of Yanchang Formation, eastern margin of Ordos Basin[J]. Acta Petrolei Sinica,2020,41(12):1513-1526.

[25] 李士祥,牛小兵,柳广弟,等.鄂尔多斯盆地延长组长7段页岩油形成富集机理[J].石油与天然气地质,2020,41(4):719-729.

LI Shixiang, NIU Xiaobing, LIU Guangdi, et al. Formation and accumulation mechanism of shale oil in the 7th member of Yanchang Formation, Ordos Basin[J]. Oil & Gas Geology,2020,41(4):719-729.

[26] HE Cong, JI Liming, WU Yuandong, et al. Characteristics of hydrothermal sedimentation process in the Yanchang Formation, south Ordos Basin, China:evidence from element geochemistry[J]. Sedimentary Geology,2016,345:33-41.

[27] ZHANG Kun, LIU Rong, LIU Zhaojun, et al. Influence of volcanic and hydrothermal activity on organic matter enrichment in the Upper Triassic Yanchang Formation, southern Ordos Basin, Central China[J]. Marine and Petroleum Geology,2020,112:104059.

[28] 梁庆韶.鄂尔多斯盆地三叠系延长组长7事件沉积特征及其耦合关系[D]. 成都:成都理工大学,2020.

LIANG Qingshao. Characteristics of event deposition and coupling relationship in the Chang 7 oil member of Triassic Yanchang Formation, Ordos Basin [D].Chengdu:Chengdu University of Technology,2020.

[29] 袁伟,柳广弟,徐黎明,等.鄂尔多斯盆地延长组7段有机质富集主控因素[J].石油与天然气地质,2019,40(2):326-334.

YUAN Wei, LIU Guangdi, XU Liming, et al. Main controlling factors for organic matter enrichment in Chang 7 member of the Yanchang Formation,Ordos Basin [J]. Oil & Gas Geology,2019,40(2):326-334.

[30] SU Kaiming, CHEN Shijia, HOU Yuting, et al. Geochemical characteristics, origin of the Chang 8 oil and natural gas in the southwestern Ordos Basin, China[J]. Journal of Petroleum Science and Engineering,2021,200:108406.

[31] YANG Weiwei, LIU Guangdi, FENG Yuan. Geochemical significance of 17α(H)-diahopane and its application in oil-source correlation of Yanchang formation in Longdong area, Ordos basin, China[J]. Marine and Petroleum Geology,2016,71:238-249.

[32] 陈果.滨浅湖细粒沉积烃源岩有机质富集机理研究[D].北京:中国石油大学(北京),2019.

CHEN Guo. Organic matter enrichment of fine-grained source rock in shollow lake facies [D]. Beijing:China University of Petroleum(Beijing),2019.

[33] 鄧南涛,张枝焕,任来义,等.鄂尔多斯盆地南部延长组烃源岩生物标志物特征及生烃潜力分析[J].矿物岩石地球化学通报,2014,33(3):317-325.

DENG Nantao, ZHANG Zhihuan, REN Laiyi, et al. Biomarker characteristics and hydrocarbon generation potential of hydrocarbon source rocks from the Yanchang Formation in the South Ordos Basin[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2014,33(3):317-325.

[34] 董君妍.鄂尔多斯盆地长7西南部烃源岩生物标志化合物特征研究[D].成都:西南石油大学,2018.

DONG Junyan. Characteristics of biomarkers of source rocks in the southwest of Chang 7, Ordos Basin [D].Chengdu:Southwest Petroleum University,2018.

[35] 吉利民.陇东西峰地区三叠系油源、成烃母质及其发育的古环境研究[D].武汉:中国地质大学,2005.

JI Limin. The oil-source correlation, biological source and paleo-climate studies of Triassic source rocks in Xifeng Area of East Gansu Province [D].Wuhan:China University of Geosciences,2005.

[36] 李相博,刘显阳,周世新,等.鄂尔多斯盆地延长组下组合油气来源及成藏模式[J].石油勘探与开发,2012,39(2):172-180.

LI Xiangbo, LIU Xianyang, ZHOU Shixin, et al. Hydrocarbon origin and reservoir forming model of the Lower Yanchang Formation,Ordos Basin [J]. Petroleum Exploration and Development,2012,39(2):172-180.

[37] 马立元,尹航,陈纯芳,等.鄂尔多斯盆地红河油田原油地球化学特征及油源分析[J].沉积学报,2015,33(2):416-425.

MA Liyuan, YIN Hang, CHEN Chunfang, et al. Geochemical characteristics and oil source analysis of crude oil in Honghe oilfield, Ordos Basin[J]. Acta Sedimentologica Sinica,2015,33(2):416-425.

[38] 王香增,任来义,张丽霞,等.鄂尔多斯盆地吴起—定边地区延长组下组合油源对比研究[J].石油实验地质,2013,35(4):426-431.

WANG Xiangzeng, REN Laiyi, ZHANG Lixia, et al. Oil and source rock correlation of lower assemblage of Yanchang Formation in Wuqi and Dingbian areas,Ordos Basin[J]. Petroleum Geology & Experiment,2013,35(4):426-431.

[39] 杨华,张文正,蔺宏斌,等.鄂尔多斯盆地陕北地区长10油源及成藏条件分析[J].地球化学,2010,39(3):274-279.

YANG Hua, ZHANG Wenzheng, LIN Hongbin, et al. Origin of Chang 10 oil reservoir in Northern Shaanxi region of Ordos Basin[J]. Geochimica,2010,39(3):274-279.

[40] 张毅颖.鄂尔多斯盆地长7段烃源岩生源类型及发育环境[D].北京:中国石油大学(北京),2019.

ZHANG Yiying. Sourcetypes and development environments of the source rocks in the 7th member of Yanchang Formation, Ordos Basin [D]. Beijing:China University of Petroleum(Beijing),2019.

[41] 赵天林.鄂尔多斯盆地南梁西区上三叠统延长组烃源岩评价与油源对比[D].西安:西北大学,2013.

ZHAO Tianlin. Hydrocarbon source evaluation and oil source contrast of Yanchang Formation of Upper Triassic in Nanliang Area [D].Xian:Northwestern University,2013.

[42] 范柏江,梅启亮,王小军,等.泥岩与页岩地化特征对比:以鄂尔多斯盆地安塞地区延长组7段为例[J].石油与天然气地质,2020,41(6):1119-1128.

FAN Bojiang, MEI Qiliang, WANG Xiaojun, et al. Geochemical comparison of mudstone and shale: a case study of the 7th member of Yanchang Formation in Ansai area, Ordos Basin[J]. Oil & Gas Geology,2020,41(6):1119-1128.

[43] 韓载华.鄂尔多斯盆地七里村油田长7烃源岩与成藏动力研究[D].西安:西安石油大学,2020.

HAN Zaihua. Study on source rock and reservoir forming dynamic of Chang 7-member in Qilicun field,Ordos Basin[D]. Xian:Xian Shiyou University,2020.

[44] CASSANI F, GALLANGO O, TALUKDAR S, et al. Methylphenanthrene maturity index of marine source rock extracts and crude oils from the Maracaibo Basin[J]. Organic Geochemistry,1988,13(1/2/3):73-80.

[45] 朱扬明,梅博文,金迪威.塔里木盆地中生界煤层的地球化学特征[J].新疆石油地质,1998,19(1):3-5.

ZHU Yangming, MEI Bowen, JIN Diwei. Geochemical characteristics of Mesozoic coal seam in Tarim Basin[J]. Xinjiang Petroleum Geology,1998,19(1):3-5.

[46] 朱扬明.塔里木盆地陆相原油的地球化学特征[J].沉积学报,1997,19(2):26-30.

ZHU Yangming. Geochemical characteristics of terrestrial oils of the Tarim Basin[J]. Acta Sedimentologica Sinica,1997,19(2):26-30.

[47] TISSOT B P, WELTE D H. Petroleum formation and occurrence[M]. Berlin:Springer-Verlag,1978:127-158.

[48] 张水昌,张宝民,边立曾,等.8亿多年前由红藻堆积而成的下马岭组油页岩[J].中国科学(D辑:地球科学),2007,37(5):636-643.

ZHANG Shuichang, ZHANG Baomin, BIAN Lizeng, et al. Oil shale of the Xiamaling Formation formed by red algae accumulation more than 800 million years ago[J]. Science China Earth Sciences,2007,37(5):636-643.

[49] PETERS K E, MOLDOWAN J M. Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum[J]. Organic Geochemistry,1991,17(1):47-61.

[50] YOU Jiyuan, LIU Yiqun, LI Yijun, et al. Influencing factor of Chang 7 oil shale of Triassic Yanchang Formation in Ordos Basin:constraint from hydrothermal fluid[J]. Journal of Petroleum Science and Engineering,2021,201:108532.

[51] DING Xiujian, QU Jiangxiu, IMIN A, et al. Organic matter origin and accumulation in tuffaceous shale of the lower Permian Lucaogou Formation,Jimsar Sag [J]. Journal of Petroleum Science and Engineering,2019,179:696-706.

[52] ZHOU Lian, ALGEO T J, FENG Lanping, et al. Relationship of pyroclastic volcanism and lake-water acidification to Jehol Biota mass mortality events (Early Cretaceous, northeastern China) [J]. Chemical Geology,2016,428:59-76.

[53] 白玉彬,羅静兰,刘新菊,等.鄂尔多斯盆地吴堡地区上三叠统延长组原油地球化学特征及油源对比[J].沉积学报,2013,31(2):374-383.

BAI Yubin, LUO Jinglan, LIU Xinju, et al. Geochemical characteristics and oil source correlation of Yanchang Formation of Upper Triassic in Wubao area, Ordos Basin [J]. Acta Sedimentologica Sinica,2013,31(2):374-383.

[54] 周世颖. 鄂尔多斯盆地周家湾-高桥地区长7-长9烃源岩评价及油源研究[D].成都:西南石油大学,2017.

ZHOU Shiying. Source rock evaluation and oil source study of Chang 7-Chang 9 in Zhoujiawan Gaoqiao area, Ordos Basin [D].Chengdu:Southwest Petroleum University,2017.

[55] 张文正,杨华,李善鹏.鄂尔多斯盆地长91湖相优质烃源岩成藏意义[J].石油勘探与开发,2008,35(5):557-562.

ZHANG Wenzheng, YANG Hua, LI Shanpeng. Hydrocarbon accumulation significance of Chang 91 high-quality lacustrine source rocks of Yanchang Formation Ordos Basin[J]. Petroleum Exploration and Development,2008,35(5):557-562.

(编辑 刘为清)

猜你喜欢
鄂尔多斯盆地烃源岩
川东南地区海相下组合烃源岩及储层沥青地化特征
西藏尼玛盆地烃源岩评价
阜阳探区古生界生烃潜力评价及勘探方向
数字检波器接收初至异常分析
利用断层岩泥质含量判断断层垂向封闭性的方法及其应用
西藏措勤盆地它日错地区下白垩统多尼组与郎山组烃源岩评价
差异性成岩演化过程对储层致密化时序与孔隙演化的影响
鄂尔多斯盆地西缘奥陶系烃源岩综合评价
鄂尔多斯盆地苏里格南部地区盒8段沉积相特征及其意义
鄂尔多斯盆地子北地区长6段油藏成藏条件及主控因素