黄佳旭,李峻,邱佩,徐少林
(南方科技大学 机械与能源工程系, 深圳 518055)
亚波长尺度周期性表面结构的制备技术对于光学、化学、材料和能源等领域的研究具有重要意义。近年来,激光诱导周期性表面结构(Laser-Induced Periodic Surface Structures,LIPSS)被广泛报导,其是一种在激光辐照下自发诱导形成的超衍射极限结构[1-3]。相比于传统的制备方法,基于LIPSS 的表面结构加工技术具备制备效率高、材料选择性低、环境宽容度高、加工路径自由可控和可突破衍射极限等优势。尽管该技术已经被验证可以在极短时间内实现晶圆级面积内亚波长结构的高效均匀制备[4-7],但由于其表面周期性能量沉积(通常是入射光与激光激发表面等离激元波(Surface Plasmon Polaritons,SPPs)的干涉)引起结构生成的机制[8],LIPSS 通常是一维的光栅结构。通过对激光进行时空调制[9-12]、多次扫描[4,13-14]、诱导表面等离激元干涉[15]或引入另一效应(如Marangoni 效应[16]、入射光干涉[17]等)等方式能有效实现二维亚波长结构的制备。
在薄膜材料领域,LIPSS 加工技术展示了广泛的应用前景。这种技术可以在众多薄膜材料上实现不同类型亚波长尺度的周期性结构制备,从而改善薄膜材料的性能,尤其在光学应用方面表现突出[18-21]。然而,在薄膜系统中,LIPSS 技术在加工适用性、稳定性以及能量沉积和热影响等方面的深入研究仍然较少。因此,进一步探讨LIPSS 技术在薄膜材料表面结构加工方面的应用将为功能性表面结构器件的发展开辟新的可能性。
本文提出了一种针对薄膜材料的二维周期性结构的高效制备方法。该方法通过调控激光沉积表面的热累积过程引起材料热膨胀诱导褶皱形成,并结合表面等离激元的激发,在薄膜材料表面实现二维周期性结构的制备,具有制备成本低、制备过程简单、制备效率高等优点。
本研究中使用的样品主要为沉积在硅基底上的锗锑碲(Ge2Sb2Te5,GST)薄膜,其制备方法为:分别用酒精和异丙醇对硅基底(N 型掺杂,<100>晶向)进行超声清洗10 min;然后,通过磁控溅射(KYKY500CK-500ZF)在基底上蒸镀相应的膜层,包括在硅基底上分别蒸镀了20 nm、40 nm 和50 nm 厚度的GST 薄膜,以及在熔融石英基底上蒸镀了50 nm 厚度的GST 薄膜。在随后的激光纳米图案化加工过程中,通过飞秒激光系统(Spectra-Physics)提供了脉冲宽度为300 fs,中心波长为520 nm,脉冲重复频率为100 kHz 的激光脉冲,随后通过半波片和格兰棱镜结合调整激光能量,并通过半波片调制激光偏振角度,而后激光束依次通过一个柱面透镜(焦距f= 25 mm)和一个物镜透镜(0.1 NA,4 倍)聚焦,最终获得长度为8 mm,宽度为7.78 μm的线形聚焦光斑。结合高精度位移平台(Newport XMS100-S)控制样品的运动,且在激光加工过程中始终保持样品的运动方向垂直于线形光斑长轴的方向。同时,本研究还通过添加一个辅助气源对样品持续吹气及时排除激光烧蚀碎屑。在激光加工完成后,再分别使用酒精和异丙醇对加工样品进行超声清洗10 min。最后通过扫描电子显微镜(SEM,Zeiss,Merlin)和原子力显微镜(AFM,Bruker,Dimension Edge)对激光加工的表面形貌进行表征测量。
如图1(a)、(b)所示,当激光以特定的脉冲能量和沉积数量辐照至薄膜材料表面时,可以在单次扫描过程中生成周期性二维纳米结构,也就是二维褶皱LIPSS。其实现原理可以简单总结为垂直偏振方向的LIPSS 生成和平行偏振方向热形变引起的材料褶皱生成,具体过程为:在激光辐照下,如图1(c)所示,在垂直偏振方向的表面等离激元激发并进一步与入射激光干涉,从而形成周期性能量沉积,导致材料的周期性烧蚀,形成LIPSS 结构[14-15,22];在平行偏振方向,如图1(d)所示,激光连续辐照将引起热累积,从而导致材料发生膨胀形变,同时,由于薄膜(GST)与基底(硅)材料的弹性模量和泊松比不同,导致薄膜材料在激光连续辐照下生成周期性褶皱[23]。上述两者不同取向的光学和力学机制将使得薄膜在正交的两个方向同步生成周期性结构,从而在单次扫描辐照中实现二维周期性结构的高效制备。
图1 激光加工二维褶皱LIPSS 原理图及加工结果Fig.1 Schematics and results of the fabrication of 2D wrinkled LIPSS
研究中激光垂直辐照至材料表面所生成的LIPSS 周期Λ在数值上等于激光激发的表面等离激元波长λSPPs(~410 nm),与前期工作研究一致[15,22]。同时,LIPSS 周期Λ还可通过调控入射光波长和角度实现进一步调控[3]。如图1(d)所示,对于褶皱的形成过程可分为两步:1)激光辐照下薄膜材料被加热,引起薄膜材料的热膨胀形变,由于薄膜材料与基底材料的热膨胀系数不一致,导致薄膜材料的上下界面的形变程度不同;2)在形变过程中当材料所受应力超过其屈服强度,薄膜材料将发生塑性形变,最终获得周期性褶皱结构。这个过程产生的褶皱周期λ计算公式为[24-25]
式中,ξ为修正系数(通常取1),h为薄膜厚度,v和E分别是材料的泊松比和杨氏模量,下标s 和f 表示基底材料和薄膜材料对应的力学参数,研究所使用材料力学参数如表1 所示。
表1 GST、硅和石英的材料力学参数Table 1 Mechanic parameters of GST, silicon and quartz
如图2(a)所示,在1 mm/s 的扫描速度,100 kHz 的脉冲重复频率和不同能量激光辐照下,硅基底上50 nm 厚的GST 薄膜形成的褶皱周期相对稳定(~270 nm),与式(1)所计算结果(~204 nm)存在一定差距。这是使用超快激光加工所导致的:由于超快激光加工过程是一连串的脉冲光源对材料进行辐照,引起材料的快速加热和冷却,从而使得激光诱导褶皱的形成过程相较于常规的加热或施加外力的过程更快地发生。因此,对式(1)加以修正,即加入修正系数ξ,其数值为拟合实验测量数据(选取周期稳定区域,即图中2(a)中脉冲能量在4.29~5.86 μJ 的数据)的周期和理论周期的比值(ξ≈1.35)。图2(b)为不同厚度GST 薄膜在硅和石英基底上激光加工制备褶皱的周期统计图,表明经过修正的预测公式能较好地拟合实验中测量的褶皱周期。同时,作为一种激光诱导热效应所生成的周期性结构,激光诱导褶皱的周期λ不受入射光波长的影响,可通过调节薄膜材料的厚度h或基底材料种类实现进一步调控,这也极大丰富了本研究提出的二维表面结构加工方法的自由度。
图2 激光诱导褶皱周期与加工能量、膜厚的关系Fig. 2 Relationship between laser-induced wrinkle period and pulse energies, as well as film thicknesses
如2.1 节所述,二维褶皱LIPSS 可在特定激光沉积能量和脉冲数量下产生,而进一步调控激光加工的沉积能量和脉冲数量可以使得加工结果从过度烧蚀、周期性结构生成到晶化改性的逐步演化(图3)。其中,生成的周期性结构包括单一的一维LIPSS 或一维褶皱结构,以及两者共存的二维褶皱LIPSS。
图3 脉冲重复频率为100 kHz,不同脉冲能量和扫描速度的飞秒激光加工中50 nm GST 薄膜(硅基底)形成表面结构的演化坐标Fig.3 Morphology evolution of wrinkled LIPSS on 50 nm GST thin film upon silicon through laser processing with its repetition rate of 100 kHz, different pulse energies and scanning speeds
如图3 所示,相对于形成二维褶皱LIPSS 的加工工况,当激光扫描速度减小时,生成LIPSS 和褶皱结构等纳米结构所需的最低脉冲能量也对应减小。其中,由于褶皱结构的形成需要一定的能量沉积,而随着扫描速度的减小,单位面积内辐照的能量将随之增加,因此,褶皱结构产生所需的最小扫描速度(3 mm/s)小于LIPSS结构所需的扫描速度(>10 mm/s)。同时,在图3 中,二维褶皱LIPSS 和一维LIPSS 以及过度烧蚀表面的划分边界不是完全分明的,在划分边界处(激光脉冲能量在5.86~6.38 μJ)二维褶皱结构中会掺杂部分的一维LIPSS 结果,但在远离该临界条件的激光加工工况中,结构类型是均一的(如图2(a)中的SEM 插图所示)。
上述的演化过程主要取决于激光激发表面等离激元和热累积效应的强度。如图4 所示,当扫描速度为1 mm/s,使用脉冲重复频率为100 kHz 的激光进行加工时,周期性结构将随着辐照激光能量的提升从褶皱结构、二维褶皱LIPSS 到一维LIPSS 逐步演化。在相对较低脉冲能量(4.02~5.07 μJ)下,表面等离激元的激发强度不足以引起材料烧蚀,而激光诱导热效应占主导地位,材料表面形成平行偏振方向的周期性褶皱,且随着激光扫描的持续进行,褶皱结构将进一步演化,最终材料形变所产生的褶皱深度约为30 nm。随着激光能量的增加(5.33~6.12 μJ),表面等离激元的激发强度与热累积效应诱导形成褶皱所需强度相当,在单次扫描过程中能同时形成LIPSS 和褶皱结构。并由于生成机制的不同,LIPSS 的均匀性略优于褶皱结构的均匀性,而LIPSS 周期和深度(~410 nm,~65 nm)略大于褶皱(~288 nm,~34 nm)。当辐照激光能量相对较高(6.33~6.64 μJ)时,表面等离激元的激发强度足够,将引起材料的周期性烧蚀。而此时激光的热效应主要表现为诱导材料晶化和Marangoni 效应,即在激光加工过程中,由于热效应导致GST 材料发生相变并结晶生成纳米晶粒,且烧蚀过程引起的Rayleigh–Plateau 不稳定将使得一维LIPSS 在生成的过程中产生不稳定的无规律扰动,从而形成波纹状的光栅结构。同时,这一系列过程还将导致所生成一维LIPSS 表面的不规则起伏(如图4 中一维LIPSS 的AFM 图所示)[22]。同时,在上述不同工况下的加工过程中,由于薄膜与基底的黏附良好,明显的薄膜结构与基底剥离的现象(如图4 中截面轮廓的SEM 图所示)并未发生。
图4 在扫描速度为0.1 mm/s,不同激光能量下50 nm GST 薄膜(硅基底)形成的周期性结构的示意图和SEM 图,以及形成结构和其截面轮廓的SEM、二维傅里叶变换和AFM 图像Fig.4 Schematics, SEM, cross-section profile, 2D Fourier transformation, and AFM images of wrinkled LIPSS on 50 nm GST thin film upon silicon under scanning speed of 0.1 mm/s and different pulse energies
二维褶皱LIPSS 的取向还可以通过调控入射光偏振角度实现进一步的调控。如图5 中的示意插图所示,本研究中定义偏振与结构的角度为其取向与线形光源长轴的夹角。根据图5 的测量统计结果可以发现LIPSS 和褶皱在不同偏振角度下都几乎保持垂直。由插图中的二维傅里叶变换图像可以明显发现LIPSS的均匀性优于褶皱的结构均匀性;同时,这两种周期性结构的均匀性还与偏振角度θ相关,LIPSS 在偏振角度与光源长轴平行(θ=0°)时比偏振垂直(θ~±90°)情况更均匀,而褶皱的均匀性变化趋势则相反。而这可能与表面等离激元波在不同偏振下的激发强度相关,在LIPSS 生成过程中涉及平行和垂直于LIPSS 的两个方向的光场增强(即光栅耦合效应和尖端光场增强效应)[14]:前者在偏振角度与光源长轴平行(θ=0°)时,使得LIPSS 沿着扫描方向生长,而后者则在偏振角度与光源长轴垂直时(θ=90°)起主导作用。然而利用线光源进行加工时,偏振平行(θ=0°)加工方式生产LIPSS 的均匀性通常会略微差于后者[4]。同时,在偏振垂直(θ=90°)的加工方式中,尖端光场增强效应的烧蚀占主导地位,这导致形成的褶皱结构较为不明显。此外,随着偏振角度θ的增大(−90°≤θ≤90°),两种结构的取向角度均呈现增加趋势;值得注意的是,在−45°≤θ≤45°的范围内,LIPSS 的取向几乎不随θ的增大而变化,这可能与LIPSS 生长过程中的尖端光场增强效应相关[14]。因此,二维褶皱LIPSS 的形成存在一定的偏振敏感性,但其仍可以通过调制激光加工过程中的偏振角度进一步调控所制备二维结构取向。
图5 不同偏振角度θ 下50 nm GST 薄膜(硅基底)上制备二维褶皱LIPSS 的褶皱角度θW和LIPSS 角度θLIPSS的变化趋势Fig.5 Change curves of the angles of wrinkle angles θW and LIPSS θLIPSS versus polarization angle θ on 50 nm GST thin film upon silicon
本研究提出了一种基于激光诱导周期性表面结构(LIPSS)的新型二维纳米图案化的高效激光加工方法,该方法能够在单步激光加工中实现方向、周期可控的均匀二维纳米结构的大面积制备。通过利用激光诱导的热效应和表面等离激元波的干涉,可以在激光照射过程中同时生成方向正交的褶皱和LIPSS 两种周期性图案。此外,这两种结构的周期可以通过调整加工材料的膜厚(或基底材料)以及激光的波长(或入射角度)来分别实现进一步调控,而它们的方向可以通过激光偏振角度进行调节。该激光图案化方法无需掩膜、低成本,仅需通过简单的激光照射便能实现薄膜材料表面的大面积二维图案化,可为激光诱导表面结构的研究提供一种新思路。