吴 昊,闫彤彤,朱宇琪,吴 倩
南京医科大学公共卫生学院卫生检验与检疫学系,江苏 南京 211166
多环芳烃(polycyclic aromatic hydrocarbon,PAH)是一类广泛存在于自然环境中的持久性有机污染物,由两个或多个构型和排列不同的苯环组成[1]。其主要来源是化石、生物燃料等有机化合物的热解或不完全燃烧[2]。PAH 可通过消化道、呼吸道和皮肤进入人体。大多数PAH具有致畸、致癌和致突变作用。国际癌症研究机构报告:苯并[a]芘(benzo[a]pyrene,BaP)为Ⅰ类致癌物。随着苯环数量的增加,PAH 的化学性质越来越稳定,其潜在的致癌性也随之增加。目前关于PAH 的致病机制包括:①代谢形成加合物损伤DNA/蛋白质等大分子物质。PAH 被细胞色素P4501A1(cytochrome P4501A1,CYP1A1)代谢成二醇环氧化物或邻醌等物质,并与DNA 或蛋白质结合,由此产生的细胞损伤可导致突变、发育畸形和肿瘤;②PAH 及其代谢物会诱导细胞内活性氧自由基(reactive oxygen species,ROS)的升高,直接作用于DNA,造成DNA的氧化损伤。若损伤达到一定水平会使基因组不稳定性增高,引起肿瘤的发生[3]。
流行病学研究表明,吸入PAH会增加人类肺癌的患病率[4]。PAH也可能是哮喘发生的潜在危险因素[5]。哮喘是最常见的儿童慢性呼吸道疾病,经胎盘暴露于来自交通相关空气污染物的PAH 可能是出生队列中哮喘相关症状早期发展的危险因素之一[6]。室内烟草烟雾中的PAH已被证明与儿童哮喘发病率之间存在相关关系[7]。Wang 等[8]对小鼠卵清蛋白哮喘模型联合暴露BaP,加剧哮喘小鼠模型的气道高反应性和肺部炎症。BaP 会诱导白介素(interleukin,IL)-25等炎症因子的表达增加,并促进气道上皮ROS的产生,加重哮喘。
PAH 还会引起机体代谢异常。在对军事相关人员血清中的BaP 与代谢物进行相关分析发现,PAH相关代谢物富集在脂质代谢中,在高BaP暴露组中,亚油酸显著降低。同时,在神经酰胺脂质形成和游离胆固醇中起关键作用的二氢神经鞘氨醇和神经鞘氨醇也显著降低[9]。Zhang 等[10]对大鼠气管滴注BaP 发现,BaP 可通过磷脂酶A2介导脂质代谢改变来加重肺损伤。在体外使用BaP刺激支气管上皮细胞(human bronchial epithelial cell,HBE)可抑制线粒体中乳酸和柠檬酸的产生,引起能量代谢重构[11]。除了BaP,菲(phenanthrene,PHE)也可以显著影响支链氨基酸(branched chain amino acid,BCAA)的生物合成,包括缬氨酸、亮氨酸和异亮氨酸,从而影响蛋白质的合成与细胞发育[12]。
近年来,随着组学技术的发展,特别是高通量代谢组学技术可提供组学技术中最具“功能性”的信息[13]。通过分析生物样品中的小分子(<1 kDa)来揭示环境暴露对生物系统影响的代谢特征[14]。代谢组学揭示了这些特征并有助于阐明环境污染物的毒理机制和疾病病因学背后的机制,最终可以为暴露于污染物的人群的后续监测提供信息[15]。
一碳代谢由叶酸循环和甲硫氨酸循环组成,参与激活和转移一碳单元并支持多种生理过程,包括生物合成(嘌呤和胸腺嘧啶)、氨基酸稳态(甘氨酸、丝氨酸和蛋氨酸)、表观遗传维持和氧化还原防御[16]。四氢叶酸(tetrahydrofolate,THF)是叶酸的生物活性形式[17],它接受衍生自氨基酸(如丝氨酸和甘氨酸)的一碳单元,生成甲基四氢叶酸(methyltetrahydrofolate,MTHF),并将一碳单元提供给嘌呤代谢、蛋氨酸循环和胸腺嘧啶合成[18]。5,10-MTHF被甲基转移酶脱甲基后生成THF 继续参与叶酸循环。S-腺苷甲硫氨酸(S-adenosyl-methionine,SAM)是一种通用的甲基供体,是将腺嘌呤核苷三磷酸(adenosine triphosphate,ATP)中的腺苷转移到甲硫氨酸中产生的。在其甲基转移到受体如DNA后,SAM 变成S-腺苷同型半胱氨酸(S-adenosyl homocysteine,SAH),然后转化为同型半胱氨酸,完成甲硫氨酸循环。
在给予蛋白木瓜酶建立的小鼠哮喘模型中抑制信号转导及转录激活蛋白3(signal transducer and activator of transcription 3,STAT3)线粒体易位并阻断甲硫氨酸循环可显著抑制Ⅱ型天然淋巴细胞(innate lymphoid cell 2,ILC2)过敏反应并改善过敏性肺部炎症[19]。体外实验发现,限制甲硫氨酸会影响T 细胞的增殖和分化。而急性甲硫氨酸限制饮食会降低CD4+T 细胞中SAM 生成,这同时降低了致病性辅助性T 细胞17(T helper cell 17,Th17)细胞的增殖和功能[20]。另有人群研究结果显示,荧蒽(fluoranthene,FLA)的内暴露水平与哮喘儿童血清中的一碳代谢物呈显著负相关,中介分析显示:作为甲基单位主要供体的SAM、SAH 和丝氨酸在FLA与儿童哮喘之间起中介作用[21]。除甲硫氨酸外,膳食叶酸摄入量与哮喘的发病率之间存在显著负相关[22]。以上证据显示一碳代谢与哮喘相关,但是并未探究其代谢机制。由于一碳代谢为DNA/组蛋白甲基化提供甲基供体,所以我们将从表观遗传的途径具体分析阐述PAH诱发哮喘的分子机制。
甲硫氨酸循环中SAM 被丝氨酸羟甲基转移酶(serine hydroxymethyl transferase,SHMT)酶脱下的甲基直接参与生物反应[23]。DNA 甲基化利用DNA 甲基转移酶(DNA methyltransferase,DNMT)把SAM 脱去的甲基转移到胞嘧啶残基的第5 个碳上,形成5-甲基胞嘧啶(5-mC)控制基因的表达。DNA甲基化对基因的修饰通过编写、读取和擦除维持其动态平衡,其通常发生在CpG 位点,即鸟嘌呤之前的胞嘧啶残基。基因启动子区的DNA 甲基化往往会降低基因的表达。与基因启动子区域相反,基因中DNA 甲基化常与DNA 转录增强有关。如在人肿瘤细胞系中,抑癌基因p16INK4a、p15INK4b、p14ARF 和p73 等启动子区CpG 岛的高甲基化会抑制其表达。组蛋白修饰也可调控基因表达。组蛋白甲基化是一种常见的组蛋白标记,通过在赖氨酸或精氨酸残基上添加甲基而发生[24]。一般来说,H3K4、H3K36 和H3K79 被认为是占据染色质中活跃转录基因区域的活性标记。H3K9、H3K27 和H4K20 被称为抑制标记,通常与沉默的基因表达相关[25]。组蛋白H3K4在增强子区域和启动子区域高度富集,它的甲基化调节在转录启动子区中发挥作用,有助于促进RNA 聚合酶Ⅱ的募集[26]。一项对哮喘儿童表观遗传模式的分析发现,哮喘儿童的LINE-1甲基化水平显著升高,这表明全基因组甲基化水平上升。PAH 中FLA 的内暴露水平与LINE-1的甲基化呈正相关。另一方面,研究表明基因特异性高甲基化与多环芳烃暴露之间存在正相关。例如,亚硫酸氢盐测序法(bisulfite sequencing PCR,BSP)发现多环芳烃暴露的工人外周血淋巴细胞中抑癌基因p16INK4α的CpG位点特异性高甲基化[27]。
已有研究表明环境刺激能改变DNA 甲基化模式,包括全基因组和特异性DNA甲基化。一项在纽约市的队列研究发现孕期暴露PAH 会导致新生儿脐带血中白细胞全基因组低甲基化[28]。另有针对新生儿脐带血中的PAH-DNA加合物与LINE-1甲基化水平的研究发现,产前暴露PAH与全基因组低甲基化相关[29]。烟草烟雾中的PAH 也被证明可以降低启动子区CpG 位点的甲基化水平,促进RUNX3、IL6R 等基因的表达,增加罹患心血管疾病的风险[30]。同时,这些基因与炎症疾病相关,例如,在过敏性哮喘患者气道中IL-6R水平升高。相关的研究显示环境PAH 的暴露会引起哮喘和过敏性鼻炎患者Treg 细胞中FOXP3 启动子区高甲基化,并降低FOXP3 的表达[31]。无论全基因组还是特异性DNA都显示出与PAH 相关的甲基化模式改变。这些人群研究表明PAH作为环境因素的潜在作用,可以通过改变特异性位点的表观遗传来调控基因表达。Seumois 等[32]对哮喘患者与对照组人群的初始T 细胞、CD4+T 细胞、辅助性T 细胞1(T helper cell 1,Th1)和辅助性T 细 胞2(T helper cell 2,Th2)中H3K4me2的全基因组分布分析发现,H3K4me2富集的增强子区与细胞类型相关。这个结果表明参与T细胞分化的DNA 与H3K4me2结合存在哮喘特异性差异。PAH暴露动物模型的肺组织中,通过染色质免疫沉淀实验检测发现结合在IL-17A 启动子区域的组蛋白H3K4me3富集增加,并调控了IL-17A的表达[21]。根据上述的研究,我们提出PAH—一碳代谢—表观遗传—炎症因子的调控轴,从代谢角度解读了PAH影响儿童哮喘发生发展的分子机制。
色氨酸(tryptophan,Trp)是一种必需的芳香族氨基酸,是许多微生物代谢物和宿主代谢物的生物合成前体。色氨酸在肠道免疫功能和肠道菌群的平衡中起着至关重要的作用。色氨酸代谢遵循三个主要途径:①肠道微生物群将色氨酸直接转化为吲哚代谢物,可激活芳香受体(aryl hydrocarbon receptor,AHR)[33];②免疫细胞和上皮细胞中通过吲哚胺2,3-双加氧酶(indoleamine 2,3-dioxygenase,IDO)代谢的犬尿氨酸途径[34];③通过色氨酸羟化酶1(recombinant tryptophan hydroxylase 1,TPH1)在肠嗜铬细胞中代谢产生5-羟色胺的途径[35]。
临床研究表明,色氨酸代谢与炎症性肠病(inflammatory bowel disease,IBD)相关。人群队列研究结果表明,IBD 患者血清中色氨酸水平降低[36]。此外,克罗恩病(Crohn’s disease,CD)患者血清中色氨酸含量远低于正常人群[36],并且其患者的粪便中色氨酸含量升高[37]。动物模型研究显示,低色氨酸饮食也增加了小鼠对葡聚糖硫酸钠引起的炎症的易感性[38]。除肠道炎症外,哮喘等炎症性呼吸道疾病也与色氨酸代谢异常相关。其中同时存在多种食物过敏的哮喘患者犬尿氨酸、喹啉酸、血清素比单一食物过敏患者显著降低[39];Ciprandi 等[40]报道过敏性鼻炎患者的血清中色氨酸和犬尿氨酸水平高于对照组;同样,Kositz 等[41]报告称,过敏患者血清中的色氨酸水平高于健康献血者,并表明较高的色氨酸水平可能是由于特异性中IDO-1 活性较低。以上研究表明,色氨酸代谢谱的改变可以增加机体的易感性或直接诱发炎症。
色氨酸代谢物除了与机体免疫稳态相关,还能作为环境污染物的暴露标志物,包括色氨酸、吲哚、犬尿酸、犬尿氨酸、黄尿酸、5-甲氧基色氨酸和硫酸吲哚酚[42]。高镉暴露地区的人群研究显示镉的暴露会引起色氨酸代谢异常。随着女性居民镉暴露程度加重,色氨酸水平上调;乙酰血清素随其暴露程度的上升而下降。在评估女性孕期空气污染与代谢标志物相关的研究中发现,与空气污染和辅助生殖后活产概率显著相关的代谢特征中,色氨酸代谢是重要的暴露标志物,孕期女性血清中的N-甲基色胺随着NOx 的暴露而升高[43]。代谢组学分析环境中的污染物与代谢标志物的相关关系,发现围产期女性暴露在环境中的双酚A(bisphenol A,BPA)后,会诱发母体色氨酸代谢的改变并影响子代的胆汁酸代谢。动物暴露实验显示孕期小鼠暴露BPA会增加粪便中的色氨酸含量,子代小鼠中呈现相同趋势[44]。
另一项小样本病例对照研究发现哮喘儿童血清中的关键代谢物如色氨酸、色胺、吲哚丙烯酸、吲哚乙酸和吲哚显著升高;吲哚-3-甲醛和吲哚乙醛显著降低[21]。差异色氨酸代谢产物主要富集于微生物—吲哚通路,色氨酸代谢中的AHR配体主要来自此通路,提示哮喘患儿吲哚-AHR 通路激活。该研究进一步对儿童血清中PAH 与色氨酸代谢物进行相关性分析发现芘(pyrene,Pyr)与血清素呈正相关;BaP 与吲哚乙酸呈正相关;屈(chrysene,Chr)与吲哚丙烯酸和色氨酸呈正相关。PAH 暴露的动物模型研究显示,模型动物的代谢图谱发生了改变。差异代谢物主要富集在色氨酸代谢通路上,如吲哚乙酸、硫酸吲哚基、犬尿氨酸、吲哚乳酸、5-羟基吲哚乙酸、吲哚-3-羧酸和吲哚-乙醛,其中大部分为AHR配体。PAH 暴露小鼠的尿液色氨酸靶向代谢分析显示喹啉酸、5-羟基-吲哚乙酸和吲哚-3-甲醛都出现变化。该结果显示PAH 的暴露会干扰色氨酸代谢谱,并可能通过AHR 通路诱发炎症,最终可能诱发哮喘。
AHR 是一种由配体激活的转录因子,它被认为是免疫和炎症反应等宿主-环境相互作用的重要调节因子。外源性配体如四氯二苯-p-二恶英(tetrachlorodibenzo-p-dioxin,TCDD)[45]和PAH 等刺激AHR 与芳基烃受体核转运蛋白(aryl hydrocarbon receptor nuclear translocator,ARNT)结合后,诱导参与TCDD 和PAH 代谢清除的CYP 酶的合成,这些酶参与外源化合物的代谢和ROS 的生成[45]。柴油机排气微粒(diesel exhaust particles,DEP)的主要成分BaP能诱导气道高反应性,嗜酸性粒细胞浸润。BaP单独暴露时加剧了室内尘螨(house dust mite,HDM)对AHR的信号转导。
内源性AHR 配体可以大致分为内源性代谢物(包括犬尿氨酸、犬尿酸、黄尿酸和肉桂酸)和肠道菌群代谢物(包括吲哚、吲哚丙酸、吲哚乙酸、粪臭素和色胺),其都可以作为AHR 的配体,与AHR 结合调节免疫稳态[46]。这些配体可以与AHR 结合并介导Treg 和Th17 的分化并影响IL-22 和IL-17A 表达,这些炎症因子在调节机体免疫及炎症反应和维持肠道菌群结构平衡中发挥着重要的作用。
PAH 暴露可导致差异代谢物富集在色氨酸代谢通路,如吲哚乙酸、犬尿氨酸、5-羟基吲哚乙酸和吲哚乙醛,而这些色氨酸代谢物均可作为AHR配体影响炎症反应。研究发现PAH 暴露小鼠肺组织中Ahr表达上调,其靶基因Cyp1a1表达也上调。在肠道组织中,Ahr和Il-17a基因也均表达上调[21]。已知IL-17A 几乎不在肺部表达,其主要在成熟的空回肠和结直肠组织中表达。PAH 暴露小鼠血清中的IL-17A 也有上升趋势。这一分析表明PAH 的暴露会诱导Ahr表达上调,诱导T 细胞分化并产生IL-17A[47],通过肠肺轴影响远端肺部炎症。
色氨酸代谢物,如吲哚乙酸和吲哚乙醛可以由梭菌属和乳杆菌属代谢生成。PAH 暴露引起小鼠的肠道菌群如乳杆菌属中的Lactobacillus murinus、阿克曼氏菌属中的Akkermansia muciniphila和梭菌属中的ClostridiaUCG-014 丰度增加。乳杆菌丰度的增加提高了吲哚乙酸和吲哚乙醛的水平,这两种色氨酸代谢物影响肠上皮细胞的通透性和宿主免疫[48]。Akkermansia可增加色氨酸代谢途径中AHR配体的吲哚乙酸和吲哚丙烯酸水平[49]。因此我们推测PAH可能改变宿主的色氨酸代谢模式,而色氨酸代谢中受肠道菌群调控的吲哚代谢通路中的代谢物可作为配体激活AHR及其下游基因的表达,从而影响IL-17A的表达水平并诱发炎症反应,
肠道菌群平衡对于肺部健康至关重要,肠与肺部之间通过肠-肺轴相互影响。肠道菌群对免疫的影响不仅局限在胃肠道,肠道固有层诱导的T 细胞和B细胞可以进入淋巴循环系统,迁移到支气管上皮和淋巴组织产生免疫反应。如肠道中双歧杆菌属细菌的减少和梭菌属细菌的增加与生命早期哮喘有关[50]。在一项随机双盲益生菌干预试验中,补充乳杆菌可能通过促进Th1 中干扰素-γ(interferon-γ,IFN-γ)和肠道中分泌型免疫球蛋白A(secretory immunoglobulin A,sIgA)的表达,降低上呼吸道感染的发生率[51]。然而,肺部疾病的出现与肠道菌群改变之间的因果关系在很大程度上仍未得到探索。近年来,人们特别关注肠道菌群在哮喘发病机制中的作用,Dumas等[52]总结了肠道菌群在肠-肺轴中可能通过其衍生的代谢产物[如短链脂肪酸(short-chain fatty acid,SCFA)],或者通过暴露其结构配体(如脂多糖或肽聚糖)来改变宿主肺、肠端炎症因子或趋化因子的表达。PAH 暴露小鼠粪便中丁酸含量显著降低[21]。丁酸盐是结肠上皮细胞的主要能量来源,有助于维持上皮肠道屏障并具有免疫调节和抗炎特性[53]。有研究发现肠道菌群中拟杆菌属与丁酸盐及丁酸盐代谢相关,该功能可能与儿童哮喘保护作用相关[54]。总的来说,肠道菌群能通过代谢产生SCFA改变宿主炎症状态,即较高的SCFA水平可以减少身体各个部位的炎症,包括气道黏膜。同时,PAH 诱发肠道菌群的改变,并进一步改变了宿主的色氨酸代谢,激活AHR,刺激回结肠分泌炎症因子IL-17A,并借助肠-肺轴通过血液到达其他器官,在肺等器官中发挥促炎功能[55]。基于上述研究,本文推测PAH可能通过肠-肺轴加重肺部炎症,并诱发哮喘。
本文分别综述了PAH 通过一碳代谢和色氨酸代谢两条代谢途径诱发肺部炎症的机制,即一碳代谢—表观遗传—IL-17A 轴和色氨酸代谢—AHR—IL-17A 轴,为解析PAH 暴露对儿童哮喘的影响,探究儿童哮喘发生发展的机制,制定PAH暴露对儿童哮喘影响的预防政策提供依据。另外,已知肠道菌群参与宿主代谢,如色氨酸代谢和短链脂肪酸代谢,并可通过肠-肺轴影响肺部健康。但本文未综述PAH 对肠道菌群的影响,以及改变宿主/菌群代谢后通过肠-肺轴干扰宿主免疫状态的机制。未来我们也将深入研究总结乳杆菌等益生菌对宿主代谢途径的影响及其诱发呼吸道炎症的具体机制。