张玉堂 陈海相 李晓莲 李冲 郎巧文
摘要:在反相液相色谱(RPLC)中以C18色谱柱为固定相,用15%~45%甲醇水溶液为流动相,研究了苯二甲酸异构体在10~50 ℃范围内的色谱保留行为和热力学性质。结果表明:邻苯二甲酸(PA)、对苯二甲酸(TPA)和间苯二甲酸(IPA)分子结构上的细微差异能在RPLC中清晰地体现出来。同时,根据苯二甲酸异构體与固定相之间的相互作用,测定了ΔH0和ΔS0的热力学参数变化。这些ΔH0和ΔS0的测定能为苯二甲酸异构体与疏水界面相互作用机制的研究提供一种行之有效的方法,也可为聚酯降解回收、生态环保、食品接触材料迁移物质等分析任务提供基础数据。
关键词:苯二甲酸异构体;反相液相色谱;保留行为;热力学参数
中图分类号:O657.7
文献标志码:A
文章编号:1009-265X(2023)02-0080-06
因反相液相色谱有着进样量少、分离度好以及重复性好等优势,所以在色谱分析中得到广泛的应
用[1-3]。反相液相色谱在苯二甲酸异构体的洗脱分离和分析方面有着许多成功的应用,促进了苯二甲酸异构体反相液相色谱分离机制的深入研究[4-6]。邻苯二甲酸(PA)、对苯二甲酸(TPA)和间苯二甲酸(IPA)通过疏水作用力与RPLC固定相配基相结合,作用力的大小和苯二甲酸异构体的化学结构密切相关。苯二甲酸异构体化学结构的不同,决定其
在RPLC中热力学参数和保留行为。本文以甲醇-水溶液为混合流动相研究了在不同比例流动相、不同温度下,苯二甲酸异构体在C18固定相上的色谱保留行为,并求算出与固定相之间相互作用的热力学参数,为优化液相色谱分析提供基础数据。
1实验
1.1仪器与试剂
仪器:Agilent 1100高效液相色谱仪(美国Agilent有限公司,配DAD检测器和自动进样器);ES1035B型电子分析天平(上海析平科学仪器有限公司);XW-80A型涡旋混合器(上海精科实业有限公司);VP-10L型无油膜真空泵(群安实验仪器有限公司);PTFE针筒过滤器(孔径0.22 μm,上海新亚有限公司)。
试剂:邻苯二甲酸、间苯二甲酸和对苯二甲酸,均为AR,上海阿拉丁试剂有限公司;硝酸钠,AR,天津科密欧化学试剂有限公司;甲醇,AR,浙江三鹰化学试剂有限公司;水为自制二级水。
1.2色谱条件
色谱柱:ZORBAX SB-C18色谱柱(150 mm×4.6 mm,5 μm),柱温:10~50 ℃;流动相:15%~45%甲醇水溶液,用前经0.22 μm微孔滤膜过滤;进样体积:5 μL,流速:1.0 mL/min;检测波长:241 nm,参比波长:360 nm。
1.3试验方法
用甲醇配制1000 mg/L的邻苯二甲酸、对苯二甲酸、间苯二甲酸的混合储备溶液,然后分别取适量的储备液,配成100 mg/L的混合溶液。采用等度洗脱的方法测定混合液中苯二甲酸异构体组分的保留时间tR,死时间tM用5%的硝酸钠水溶液测定,容量因子k由式(1)来计算。
k=(tR-tM)/ tM(1)
2结果与讨论
2.1苯二甲酸异构体的色谱保留行为
可用式(2)来表达流动相组成和容量因子之间关系的经验公式[7]:
lnk=SΨ+lnkw(2)
式中:k为容量因子,Ψ为甲醇在流动相中所占体积分数。斜率S为溶剂强度参数,用来描述溶质和流动相之间的相互作用力;截距kw为溶质的外推容量因子,即以纯水为流动相时(Ψ=0),用来描述溶质和固定相配基的亲和作用力[8-10]。在1.2的色谱条件下,测定并分析了PA、TPA和IPA三者的lnk和Ψ之间的关系(如图1所示),lnk与Ψ之间线性关系较好,相关系数r均在0.99以上,表明在本实验研究范围内,控制异构体保留行为的影响因素是连续稳定的。并求出斜率S值与lnkw(见表1),S为负值表明溶质为疏水洗脱[11]。
若以(-S)为横坐标和lnkw为纵坐标作图(见图2),图2中纵轴截距与斜率分别代表着极性作用和氢键作用的相对大小。在10~50 ℃范围内,对苯二甲酸和间苯二甲酸两组分的(-S)和lnkw呈现良好的线性关系,斜率相近(分别为93.23和94.01)表明对苯二甲酸和间苯二甲酸的氢键作用相似,而截距不同表明极性作用大小有差异;邻苯二甲酸的(-S)和lnkw不具有线性关系,表明邻苯二甲酸的极性作用能和氢键作用均存在差异。
2.2lnkw和S参数与柱温之间的关系
溶质的色谱保留行为可用lnkw和S两个参数进行表达[10,14],一般来说在流动相中溶质的结构不会发生变化,而当温度慢慢升高,分子的热运动随之增加,lnkw应该逐渐减小。lnkw和(-S)与柱温的关系如图3所示,图3(a)中lnkw随温度升高而减小符合上述推断,而且PA、TPA和IPA3种异构体的lnkw和温度之间线性关系都比较良好,说明在本实验范围内,温度对3种异构体在色谱当中保留行为的影响是连续的。S值是lnk′对Ψ作图得到,表示溶质和流动相之间的相互作用力[12-13]。图3(b)中PA、TPA和IPA 3条直线的纵轴截距的不同,表明3种异构体和流动相之间的相互作用力不同,而且图中(-S)与温度之间线性关系均良好,说明温度对溶质与流动相之间作用力的影响是单一的。图3(b)中PA、TPA和IPA 3者斜率相近,表明3种异构体与流动相之间的作用力受温度影响相似。
图3中直线均未出现交叉情况,表明在10~50 ℃的范围内PA、TPA和IPA 3者与流动相之间的作用力存在较小差异,能在流动相的洗脱下得到有效分离。根据图3 3条直线的方程作两两交叉求算:得出图3(a)中PA和TPA、IPA两直线的交点温度分别为544 ℃、167 ℃,TPA和IPA的交点为124 ℃;图3(b)中PA、TPA和IPA 3条直线交叉温度均在220 ℃附近。结果说明了苯二甲酸3种异构体能在较大温度范围实现较好的分离。
2.3苯二甲酸异构体与C18固定相结合的热力学参数
容量因子k又可用表达式k=k′β来表示[15],两边取对数得式(3):
lnk=lnk′+lnβ(3)
式中:k′为组分和色谱柱固定相的结合平衡常数;β为柱相比:即固定相和流动相的体积比。
根据热力学第二定律ΔG0=ΔH0-TΔS0和平衡常数ln k′=-ΔG0/RT可得式(4):
ln k=-ΔH0/RT+ΔS0/R+lnβ(4)
式中:ΔG0为标准自由能变化;ΔH0为标准焓变;ΔS0为标准熵变;R为摩尔气体常数(为8.314 J·mol·k);T为绝对温度[10,12]。
Van't Hoff曲线可由lnk对1/T作图所得,能用来表征溶质在与固定相结合时的作用机制。苯二甲酸3种异构体的Van't Hoff曲线如图4所示,不同比例流动相之间线性关系较为良好,相关系数r均在0.99以上,表明在本实验的研究条件下,PA、TPA和IPA在和C18固定相结合时结合机制不变,或者说苯二甲酸种异构体在C18色谱柱上的保留机制不发生变化。
图4中直线的斜率即-ΔH0/R,纵坐标的截距即ΔS0/R+lnβ。相比β一般无法获得准确的数值,特定色谱柱的柱相比β为常数,所以为了方便计算,通常令β为1[16]。因此计算得出在不同Ψ下苯二甲酸3种异构体与C18固定相疏水配基结合时的ΔH0和ΔS0值(见表2)。
溶质与固定相结合过程中热量的变化可以用热力学参数ΔH0数值变化来表征。ΔH0负值越大,表示结合时释放的能量越多,结合更加牢固,亲和力越强;假如这种结合是疏水的,则说明溶质的疏水作用力越大。因此苯二甲酸3种异构体的疏水能力也可以用ΔH0值来定量表示。表2中得到的ΔH0均为负值,当提高流动相中甲醇的比例,PA、TPA和IPA的ΔH0數值均呈现递增趋势,表明随着甲醇比例的增加,流动相的洗脱作用力增强,溶质与固定相之间亲和力下降,溶质洗脱加快。在相同比例的甲醇条件下,TPA和IPA的ΔH0值接近,说明在同一比例
甲醇下,对苯二甲酸和间苯二甲酸与C18固定相亲和力相似,而PA与其相差较大,主要是因PA两个羧基处于邻位,空间位阻较大,易形成分子内氢键,极性较大,这在理论上验证了三者在色谱流出时的保留行为。结合过程中混乱度的变化可以体现在ΔS0值的变化上。ΔS0为负值时,代表自由度减小;ΔS0为正值时,代表混乱度增加。表中ΔS0值均为负值,说明溶质在结合过程中被束缚、自由度减小,在与C18柱固定相疏水性结合时,苯二甲酸3种异构体的空间结构不发生变化。
3结论
PA、TPA和IPA3种异构体双羧基在苯环上的位置差异能明显地体现在RPLC的色谱保留行为上。在RPLC中固定相为C18色谱柱,用15%~45%甲醇水溶液为流动相,研究发现苯二甲酸3种异构体在10~50 ℃温度范围内的Van't Hoff曲线以及lnk和Ψ间都有较好线性关系。异构体在与C18柱固定相结合的过程中,结合机制不发生变化,流动相组成和柱温因素对苯二甲酸异构体的保留行为控制也是连续且稳定的。ΔH0和ΔS0均为负值,表明苯二甲酸异构体在与C18柱固定相结合的过程中被束缚、自由度减小,同时释放出能量。在相同甲醇比例下,TPA和IPA的ΔH0值和ΔS0值接近且大于PA,说明TPA和IPA与C18柱固定相结合能大于PA且随着甲醇比例Ψ的提高而下降。
参考文献:
[1]康峰,赵金尧,刘钊,等.超高效液相色谱法测定食品接触材料中间苯二甲酸和对苯二甲酸特定迁移量[J].理化检验-化学分册,2021,57(5):398-404.
KANG Feng, ZHAO Jinyao, LIU Zhao, et al. Determination of specific migrations of m-phthalic acid and p-phthalic acid in food contact materials by Ultra high performance liquid chromatography[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2021, 57(5): 398-404.
[2]姚媛媛,段正康,曾航日,等.正相液相色谱保留时间漂移的影响因素和解决办法研究[J].应用化工,2016,45(6):1184-1186,1190.
YAO Yuanyuan, DUAN Zhengkang, ZENG Hangri, et al. The influence factors and solutions research for retention drift in the normal phase liquid chromatograph[J]. Applied Chemical Industry, 2016, 45(6): 1184-1186, 1190.
[3]林型跑,陈海相,孙岩峰,等.高效液相色谱法测定纺织品中丙烯酰胺、甲基丙烯酰胺和N-羟甲基丙烯酰胺[J].现代纺织技术,2019,27(1):80-86.
LIN Xingpao, CHEN Haixiang, SUN Yanfeng, et al. Determination of acrylamide, methacrylamide and N-hydroxymethyl acrylamide in textiles by HPLC[J]. Advanced Textile Technology, 2019, 27(1): 80-86.
[4]李婷,侯晓东.反相高效液相色谱法同时测定食品包装材料中对苯二甲酸和间苯二甲酸迁移量的研究[J].食品科技,2016,41(3):311-314.
LI Ting, HOU Xiaodong. Determination of terephthalic acid and isophthalic acid in food packaging materials by RP-HPLC[J]. Food Science and Technology, 2016, 41(3): 311-314.
[5]王锐,王新宇,唐川江,等.高效液相色谱法测定涤纶中的间苯二甲酸含量[J].色谱,2001,19(4):372-373.
WANG Rui, WANG Xinyu, TANG Chuanjiang, et al. Determination of Isophthalic acid in polyethylene glycol terephthalate fiber by high performance liquid chromato-graphy[J].Chinese Journal of Chromatography, 2001, 19(4): 372-373.
[6]王建玲,肖晓峰,陈彤,等.高效液相色谱-紫外检测法同时测定食品接触材料中7种苯多酸及其衍生物的特定总迁移量[J].色谱,2015,33(8):856-863.
WANG Jianling, XIAO Xiaofeng, CHEN Tong, et al. Simultaneous determination of total specific migration limit of seven benzene polycarbonic acids and their derivatives in food simulants by high performance liquid chromatography-ultraviolet detection[J]. Chinese Journal of Chromato-graphy, 2015, 33(8): 856-863.
[7]陳海相,王炳辉.陈文兴.苯酚和苯二酚异构体在反相色谱上的保留行为和热力学性质[J].浙江理工大学学报(自然科学版),2010,27(1):159-163,168.
CHEN Haixiang, WANG Binghui, CHEN Wenxing. Retention behavior and thermodynamic properties of phenol and Di-hydroxybenzene isomers on reversed-phase liquid chromatography[J]. Journal of Zhejiang Sci-Tech University(Natural Sciences Edition), 2010, 27(1): 159-163, 168.
[8]卢佩章,戴朝政.色谱理论基础[M].北京:科学出版社,1989.
LUO Peizhang, DAI Chaozheng. Theoretical Basis of Chromatography[M]. Beijing: Science Press, 1989.
[9]郭敏亮,Milton T W Hearn, Reinhard I Boysen.三种胰岛素在反相色谱上的保留行为与热力学性质[J].生物化学与生物物理学报,2000(3):265-269.
GUO Minliang, MILTON T W H, REINHARD I B. Retention and thermodynamic properties of three insulins variants on reversed-phase liquid chromatography[J]. Acta Biochimica et Biophysica Sinica, 2000(3): 265-269.
[10]PURCELL A W, AGUILAR M I, HEARN M T W. High-performance liquid chromatography of amino acids, peptides and proteins CXV. Thermodynamic behaviour of peptides in reversed-phase chromatography[J]. Journal of Chromatography A, 1992, 593(1/2):103-117.
[11]TAN L C, CARR P W. Extra-thermodynamic relationships in chromatography[J]. Chromatography, 1993, 656(1/2): 521-535.
[12]邱洪灯,孙亚捷,蒋生祥,等.咪唑键合硅胶液相色谱固定相的反相色谱行为[J].分析测试技术与仪器,2006,12(2):82-85.
QIU Hongdeng, SUN Yajie, JIANG Shengxiang, et al. Reversed phase interaction of imidazole functionalized silica stationary phase for liquid chromatography[J]. Analysis and Testing Technology and Instruments, 2006, 12(2): 82-85.
[13]李建军,贺娜,王骊丽.溶质在两种反相色谱柱中的动力学色谱行为[J].分析试验室,2012,31(3):66-69.
LI Jianjun, HE Na, WANG Lili. Dynamic chromatography behavior of solutes on two reversed phase chromatographic columns[J]. Chinese Journal of Analysis Laboratory, 2012, 31(3): 66-69.
[14]PURCELL A W, AGUILAR M I, HEARN M T W. Conformational effects in reversed-phase high-performance liquid chromatography of polypeptides II. The role of insulin A and B chains in the chromatographic behaviour of insulin[J]. Journal of Chromatography A, 1995, 711(1): 71-79.
[15]VAILAYA A, HORVTH C. Exothermodynamic relation-ships in liquid chromatography[J]. The Journal of Physical Chemistry, B, 1998, 102(4): 701-718.
[16]赵建国,卫引茂,耿信笃.蛋白质在疏水色谱中保留的热力学参数的测定[J].分析科学学报,2004,20(6):583-585.
ZHAO Jianguo, WEI Yinmao, GENG Xindu. Determina-tion of thermodynamic parameters of protein retention in hydrophobic interaction chromatography[J]. Journal of Analytical Science, 2004, 20(6): 583-585.
Retention behavior and thermodynamic properties of phthalic acid isomers by RPLC
ZHANG Yutang, CHEN Haixiang, LI Xiaolian, LI Chong, LANG Qiaowen
(Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China)
Abstract: Polyethylene terephthalate (PET), commonly known as polyester, is a condensation of terephthalic acid (TPA) and ethylene glycol (EG). In the process of PET production and processing, IPA and PA are widely used as important additives. In the process of production and use, the residual or degraded phthalic acid substances will seriously harm human health if they accidentally enter the human body. At home and abroad, no matter as packaging materials for food and medicine, or as fabrics for underwear, there are corresponding national standards for the residual or migratory amount of TPA, IPA and PA. Therefore, in the process of analysis and detection, it is necessary to be able to quickly separate the three and accurately quantify them.
Reversed phase liquid chromatography (RPLC) has been widely used in chromatographic analysis because of its advantages such as small sample size, good separation and excellent repeatability. In order to further optimize the separation effect of benzoic acid isomers in liquid chromatography, we studied the chromatographic retention behavior of benzoic acid isomers in C18 stationary phase with different proportions of mobile phase and different temperatures using methanol-aqueous solution as the mixed mobile phase, and calculated the thermodynamic parameters of the interaction between benzoic acid isomers and stationary phase. The stationary phase was C18 column in RPLC, and the mobile phase was 15%~45% methanol aqueous solution. It was found that the Van't Hoff curve and the lnk and Ψ had a good linear relationship in the temperature range of 10 to 50 ℃. In the process of binding with C18 column fixation, the binding mechanism did not change, and the retention behavior of terephthalic acid isomers controlled by mobile phase composition and column temperature was continuous and stable. Both ΔH0 and ΔS0 are negative values, indicating that the benzoic acid isomers are bound, the degree of freedom decreases, and energy is released during the process of C18 column fixation. Under the same methanol ratio, ΔH0 and ΔS0 values of TPA and IPA are close to and greater than PA, indicating that the binding energy of TPA and IPA with C18 column is greater than PA and decreases with the increase of methanol ratio.
The position difference of PA, TPA and IPA3 isomer dicarboxylate on the benzene ring can be obviously reflected in RPLC retention behavior. Better separation effect and accurate quantification can be obtained by adjusting the proportion of mobile phase and column temperature. The study of its retention behavior and thermodynamic properties can provide an effective method for the separation of other types of isomers, and also provide basic data for analysis tasks such as polyester degradation recovery, ecological environmental protection, and food contact material migration.
Keywords: phthalic acid isomer; RPLC; retention behavior; thermodynamic parameter
收稿日期:20220712
網络出版日期:20221104
基金项目:浙江省文物保护科技项目(2022001)
作者简介:张玉堂(1995—),男,湖北黄石人,硕士研究生,主要从事功能高分子材料及分析方面的研究。
通信作者:陈海相,E-mail:chx@zstu.edu.cn