吴圣勇 张起恺 张烨 刁红亮 张治科 唐良德 张田园 张晓明 雷仲仁
摘要 番茄潜叶蛾Phthorimaea absoluta Meyrick起源于南美洲的秘鲁,是一种世界检疫性入侵害虫,目前已经扩散到全球100多个国家,严重威胁全球番茄产业。该虫于2017年入侵我国新疆伊犁,之后在南方多个省份相继被发现,且呈现扩散趋势,危害范围加大。本文从农业防治、化学防治、生物防治、物理防治等方面总结番茄潜叶蛾原发地和入侵国的防治进展及治理经验,并结合我国实际提出建议,为国内番茄潜叶蛾的有效治理和抑制其扩散提供参考。
关键词 番茄潜叶蛾; 入侵害虫; 农业防治; 化学防治; 生物防治; 物理防治; 害虫综合防控(IPM)
中图分类号: S 433.4
文献标识码: A
DOI: 10.16688/j.zwbh.2021729
Abstract The tomato leafminer Phthorimaea absoluta Meyrick originated from Peru, South America, is a quarantine invasive pest worldwide. It was found that the pest has currently spread to more than 100 countries, seriously threatening the global tomato industry. P.absoluta was first recorded in Yili, Xinjiang, China in 2017, and was subsequently found in many southern provinces, showing a tendency of rapid spread and increasing scope of pest damage. In the review, we summarized the progress and experience in the control of P.absoluta in its native areas and invaded countries, including agricultural practices, chemical insecticides, biological and physical control. Combined with Chinese practices, some suggestions were put forward to provide a reference for restraining further spread and promoting effective control of P.absoluta in China.
Key words Phthorimaea absoluta; invasive pest; agricultural practices; chemical control; biological control; physical control; integrated pest management(IPM)
番茄潛叶蛾Phthorimaea absoluta Meyrick [异名: Tuta absoluta (Meyrick)]是一种新的外来入侵害虫,原产南美洲的秘鲁,被称为番茄Solanum lycopersicum上的“埃博拉病毒”。该虫主要以幼虫潜食叶肉、顶芽、嫩茎、嫩梢、蛀食果实等方式为害,严重发生时可导致80%~100%的番茄产量损失,是最具毁灭性的世界性入侵害虫之一[1]。番茄潜叶蛾寄主范围广,可为害包括番茄、茄子、甜椒、菜豆、菠菜等在内的多种蔬菜及烟草、水果等经济作物、粮食作物、糖料作物等[2-3],且扩散迅速。截至2022年6月,该害虫已经扩散到南美洲以外的欧洲、非洲、中美洲、亚洲的100多个国家[4]。2017年8月,该虫首次在我国新疆伊犁的露地番茄上被发现,后来又在云南临沧发现其为害保护地番茄[5],之后在贵州、四川、重庆、广西、湖南、江西等地相继发现[6]。目前,该虫呈现出持续扩散的趋势,严重威胁我国番茄及其他蔬菜产业。为了抑制番茄潜叶蛾的持续扩散和为害,本文总结了国外的防治技术和经验,并结合国内实际情况提出建议。
1 农业防治
番茄潜叶蛾的农业防治措施主要是通过筛选、培育抗性品种以及通过轮作、灌溉、施肥等栽培管理措施来抑制其种群增长。
1.1 抗性品种
抗番茄潜叶蛾植物品种的选育工作主要集中于番茄作物。早在20世纪90年代,国外(尤其是巴西)育种家就开始探索利用抗性寄主来抑制番茄潜叶蛾的为害[7]。当时主要是研究番茄叶片上毛状体(trichomes)的抗虫功能,因为毛状体能释放具有杀虫活性的化合物,对番茄潜叶蛾幼虫具有一定的防治效果[8]。目前,人工培育的番茄品种中,仅有为数不多的几种对番茄潜叶蛾表现中抗,大部分都易感染番茄潜叶蛾[9-10],对番茄潜叶蛾抗性较强的番茄多为野生品种[11]。在番茄野生品系中,其抗性与植物基因型、叶片和根茎毛状体密度及分泌的化合物有关[12]。其中,异种化感物(酰基糖、姜烯和2-十三烷酮)可降低番茄潜叶蛾的产卵量和对作物的为害[13-14]。Rakha等[11]研究发现一些与人工驯化品系较为接近的野生番茄S.galapagense、S.cheesmaniae和S.pimpinellifolium对番茄潜叶蛾表现出较高抗性,这些番茄种类都具有高密度的能分泌酰基糖和倍半萜的腺毛。目前,国外育种家通过导入野生番茄S.galapagense的DNA序列的方式培育出商业化的可抗番茄潜叶蛾等鳞翅目害虫及番茄斑萎病毒的番茄品系,并已申请专利[15]。Selale等[16]报道了转Bt基因番茄可提高番茄潜叶蛾幼虫死亡率,并能降低叶片潜道的数量。
1.2 栽培管理
利用栽培管理措施控制番茄潜叶蛾是一种低成本的防治策略。其中,水肥管理是最常见的措施,合理施肥既能为作物提供必需的养分,又能提高作物忍耐害虫为害的能力。Mohamadi等[17]研究发现,在土壤中施用腐殖酸肥料能增强番茄对番茄潜叶蛾的抵御能力。降低氮肥使用量也能抑制番茄潜叶蛾在植物叶片上的存活率,延长其发育历期,从而降低其种群数量[18-19]。Contreras等[20]报道,随灌溉水施用金龟子绿僵菌Metarhizium anisopliae液体制剂可提高番茄潜叶蛾蛹的死亡率。此外,在种植番茄作物时,清除周边茄科近缘种植物,有助于抑制其种群扩散,降低后代种群数量。通过与非茄科类作物轮作以终止或减少番茄潜叶蛾的喜好寄主植物,可打断其生活史,从而有效抑制害虫种群增长[21]。
2 化学防治
化学防治是控制番茄潜叶蛾的主要手段[3,22-23],其主要优势是能够快速、经济高效地消灭害虫,特别是害虫刚入侵时,当地缺乏有效的防控措施,化学防治可以为综合治理方案的制订赢得时间[23-25]。目前登记用于防治番茄潜叶蛾的杀虫剂主要有:有机磷类(毒死蜱、甲胺磷)、拟除虫菊酯类(溴氰菊酯、高效氯氟氰菊酯、联苯菊酯、苄氯菊酯)、噁二嗪类(茚虫威)、多杀菌素类(多杀霉素、乙基多杀菌素)、阿维菌素类[阿维菌素、甲氨基阿维菌素苯甲酸盐 (甲维盐)]、吡咯类(虫螨腈)、几丁质合成抑制剂(二氟脲、虱螨脲、双苯氟脲)、二酰胺类(氯虫苯甲酰胺、氟虫双酰胺)、昆虫生长调节剂(环虫酰肼、甲氧虫酰肼、虫酰肼)、缩氨基脲类(氰氟虫腙)、四降三萜類(印楝素)和沙蚕毒素类(杀螟丹)[23]。王少丽等[26]评价了7种药剂对番茄潜叶蛾的致死效果,结果表明,1.8%阿维菌素水乳剂、24%虫螨腈悬浮剂、5%氯虫苯甲酰胺悬浮剂,5%甲维盐水分散粒剂和6%乙基多杀菌素悬浮剂对番茄潜叶蛾有极高的毒力。
杀虫剂的不合理使用导致番茄潜叶蛾的抗药性增强。起初,在南美洲观察到了番茄潜叶蛾对有机磷和拟除虫菊酯的低水平抗性,随后进一步检测到其对阿维菌素、杀螟丹和甲胺磷的抗性[27-29]。之后,检测出其对茚虫威中低水平的耐药性以及对几丁质合成抑制剂高水平的耐药性[30-31],近几年检测到其对多杀霉素和二酰胺的耐药性,并且可能正在增强[31-33]。除了南美洲,该虫在欧洲也被检测出对拟除虫菊酯、茚虫威、多杀霉素、二酰胺的抗性[30,34-37]。
番茄潜叶蛾的抗药性导致了化学药剂的不断更替使用[22]。有机磷和拟除虫菊酯分别于20世纪60年代和80年代开始用于防治番茄潜叶蛾,是最早用于防治该虫的杀虫剂[27-28,38],而后被杀螟丹和阿维菌素所代替[27,29,36]。到20世纪90年代末,茚虫威和几丁质合成抑制剂已经上市,尤其是后者成为广泛用于防控番茄潜叶蛾的药剂[7, 30]。到了21世纪,使用的杀虫剂种类主要有虫螨腈、多杀霉素、氯虫酰胺类和氟虫酰胺类[7, 30, 35]。
3 生物防治
番茄潜叶蛾的生物防治措施主要包括使用天敌昆虫和致病微生物。
3.1 天敌昆虫
番茄潜叶蛾的天敌昆虫资源丰富,包括至少60种多食性捕食性天敌和近100种寄生性天敌,分布于南美洲、欧洲、亚洲、非洲等地区[39-40],如半翅目的捕食性蝽类和膜翅目的寄生蜂类,其中有多种天敌对番茄潜叶蛾种群具有较高的抑制作用[41-42]。
对于捕食性天敌来说,在欧洲有两种已经商业化的本土天敌烟盲蝽Nesidiocoris tenuis和Macrolophus pygmaeus成功用于防治番茄潜叶蛾[43]。这两种捕食蝽具有两项生物学优势:一是对番茄潜叶蛾卵的取食量大[44];二是植食性的取食特点使得其在猎物匮乏时仍能在番茄植株上存活[45]。但在应用策略上需要注意保护其种群,并在番茄作物定植前释放。如在番茄潜叶蛾已经发生后再释放捕食蝽,其效果会大大降低[46]。需要注意的是,由于盲蝽具有植食性,因此在必要情况下需要使用化学药剂降低盲蝽种群数量,减轻其对作物的为害,提高其生防效果[47-48]。Naselli 等[49]报道,通过种植芝麻Sesamum indicum作为伴生植物可降低盲蝽对番茄植株的为害。此外,通过生态调控策略可提高盲蝽的生物防治功能。例如,在番茄作物周边种植金盏花 Calendula officinalis,或利用金盏花作为替代寄主在温室中建立载体植物系统(banker plant system),均有助于保持M.pygmaeus种群,该方法已经在西班牙和法国成功应用[50-51]。
对于天敌寄生蜂来说,在南美洲,至少有8种商业化的赤眼蜂可用来防治番茄潜叶蛾。例如,巴西通过单独释放短管赤眼蜂Trichogramma pretiosum,或者与Bt联合防治番茄潜叶蛾已经取得成功[52]。在阿根廷,在田间释放T.nerudai有效降低了番茄潜叶蛾种群数量[53]。此外,研究者在温室中释放一种卵寄生蜂Pseudapanteles dignus获得了较好的防治效果[54]。在欧洲,释放的短管赤眼蜂对番茄潜叶蛾的寄生率达90%以上[55],该赤眼蜂目前在欧洲和北非均实现了商业化生产[56]。在非洲(主要是突尼斯和埃及),在保护地或大田释放两种本土赤眼蜂Trichogramma cacoeciae和T.bourarachae可显著降低番茄潜叶蛾种群数量,减少对植物的为害[57-58]。
捕食性天敌和寄生性天敌联合应用、天敌与其他措施联合应用也是防治番茄潜叶蛾的有效措施。在欧洲,联合释放Trichogramma achaeae与烟盲蝽提高了对番茄潜叶蛾的防治效果[59]。在亚洲(主要是土耳其、伊朗、沙特阿拉伯),联合释放T.evanescens和烟盲蝽被证明可有效防治番茄潜叶蛾[60]。类似地,食胚赤眼蜂T.embryophagum与Bt联合应用或甘蓝夜蛾赤眼蜂T.brassicae与多杀菌素类杀虫剂联合应用,均能有效降低番茄潜叶蛾种群数量[61-62]。
3.2 致病微生物
番茄潜叶蛾的致病微生物主要包括细菌、真菌、病毒和线虫。苏云金芽胞杆菌Bacillus thuringiensis (Bt),包括Bt kurstaki和Bt aizawai两个亚种已被广泛应用于防治蔬菜作物上的鳞翅目害虫[63]。商业化的Bt制剂已经成为防治番茄潜叶蛾的重要微生物杀虫剂。番茄潜叶蛾的原发地南美洲及之后遭其入侵的国家都相继利用Bt防治该害虫[64-65]。Urbaneja等[46]报道,施用Bt可使番茄潜叶蛾种群数量减少95%。昆虫病原真菌中的球孢白僵菌Beauveria bassiana、金龟子绿僵菌和虫草棒束孢Isaria farinosa对番茄潜叶蛾有一定的防治潜力[66]。Klieber等[67]报道,一种商业化的球孢白僵菌可作为内生菌定殖于番茄植株体内,并导致各龄期番茄潜叶蛾的校正死亡率达到30%~50%。球孢白僵菌和金龟子绿僵菌(浓度为106孢子/mL)对番茄潜叶蛾卵的致死率分别为50%和37.6%[68]。Mascarin等[69]发现一种从马铃薯块茎蛾Phthorimaea operculella体内分离的颗粒体病毒(PhopGV)可延缓番茄潜叶蛾幼虫发育,并降低其羽化率。EI Aimani等[70]通过室内和田间试验,发现在40~50 IJs/cm2浓度下,夜蛾斯氏线虫Steinernema feltiae(品系SF-MOR9和SF-MOR10)和异小杆线虫属Heterorhabditis线虫(品系HB-MOR8)对番茄潜叶蛾幼虫的致死率在60%~100%,认为这3个昆虫病原线虫品系对防治番茄潜叶蛾有很高的应用潜力。
4 物理防治
性信息素诱杀技术是防治番茄潜叶蛾的重要方法之一[56],也可以起到预测预报的作用。性信息素诱杀主要是根据雌性释放的性信息素组分,人工合成性信息素引诱剂,对雄蛾进行大量诱捕[56,71]。番茄潜叶蛾雌成虫释放的性信息素主要包括两种组分,分别为反-3,顺-8,顺-11-十四碳三烯乙酸酯[(3E,8Z,11Z)-3,8,11-tetradecatrien-1-yl acetate (TDTA)](主要组分)[72-73]和反-3,顺-8-十四碳烯醇乙酸酯[(3E,8Z)-3,8-tetradecadien-l-yl acetate (TDDA)](次要组分)[74-75]。单独使用TDTA或两种组分混合使用均能诱捕到大量的雄蛾[76-77]。在我国,已商品化的番茄潜叶蛾性信息素产品有4种,分别由青岛罗素生物技术有限公司、北京水光科技有限公司、北京中捷四方生物科技股份有限公司和中国科学院动物研究所等单位研发,在田间均具有较好的使用效果。综合评价结果表明,中国科学院动物研究所研发的番茄潜叶蛾性信息素产品性价比最好[78]。性信息素与三角形诱捕器配合使用诱捕效果更好[79]。
此外,利用信息素迷向技术干扰雄虫对雌虫的搜索定位,降低交配几率,可以减少番茄潜叶蛾后代的发生量[71]。迷向技术使用的性信息素剂量较高,如每公顷需使用500~1 000个信息素分散器才能达到干扰效果[80],且迷向效果常常受到种群密度、已交配雌蛾迁入处理区、防治面积等因素的影响,因此对于迷向技术的使用应谨慎。
在保护地中可以使用灯光引诱以减轻番茄潜叶蛾为害[81-82]。此外,选择番茄潜叶蛾趋性较强的黑色、红色、绿色、蓝色色板可提高诱杀效果[71]。
5 总结与建议
番茄潜叶蛾是威胁全球番茄生产的一种重要害虫,从各国探索的防治技术的效果来看,一方面,化学防治仍然是主要的应急手段和常规措施,另一方面,单一的防治措施往往不能有效抑制番茄潛叶蛾的传播和为害。Desneux等[56]针对各种防治措施在应用过程中的权重问题,对29个国家(害虫原发地3国,早期入侵地12国和新入侵地14国)的相关从业者进行了较为详尽的问卷调查,结果发现,化学防治在各类措施中的占比总体偏高。但值得注意的是,化学农药在应用中的比重逐年降低,这种趋势在害虫早期入侵地的防控中尤为明显。此外,南美洲作为害虫原发地,化学防治占比在2006年明显下降,但之后却变化不大,这也意味着化学防治仍是该地区综合防治措施中的主要手段。以欧洲、北美洲和中东为代表的早期入侵地区在2012年开始借助本土寄生性天敌(如赤眼蜂Trichogramma spp.)和捕食性天敌(如烟盲蝽、M. pygmaeus)的释放,以及微生物杀虫剂Bt的应用来控制害虫,这些生物防治措施有效减少了化学农药的使用频次,极大程度地降低了化学防治所诱发的安全隐患和生态风险。此外,一些其他防治手段如性诱剂诱杀,品种选育及栽培管理,虫情的监测预警等,也逐渐被应用到害虫的综合防控中来。这些防治手段在单独应用时可能见效甚微,但其作为化学防治或者生物防治的辅助手段时,其协同增效作用明显。例如,生物杀虫剂搭配寄生性天敌和捕食性天敌的释放,或者联合性诱剂诱杀、干扰交配等方法可以提高对番茄潜叶蛾的综合防治效果。
基于国外的经验,在国内番茄潜叶蛾新入侵地区以及预测的入侵地区,在防控时除了可借鉴国外原发地和早期入侵地所积累的知识、经验与成功案例,同时还应注意本土天敌资源的发掘以及外来天敌优势种资源的引入。在实践中,还应借助多种防治措施的联合应用来实现对该害虫的综合防控(IPM),但综合防治技术在具体执行时也不是一成不变的,需要根据害虫入侵后的范围和时间进行适当调整,使其更适用于当时的防控环境。Kogan等认为IPM策略的执行过程具有明显的阶段性,首先需通过适时的化学防治将害虫造成的损失控制在经济阈值以下,此后则应采用生物防治或农业防治等非化学防治手段[83]。目前,在番茄潜叶蛾原发地和早期入侵地化学防治措施在综合防控技术中虽仍有一定占比,但总体呈现下降趋势。总体来看,新入侵地过分依赖化学防治的困境也会随着综合防控技术的深入推进而得以缓解。
番茄潛叶蛾作为一种入侵生物近年来在全球的扩散速度加快,为害加重。在遵守外来入侵生物管理政策的前提下,当番茄潜叶蛾入侵到相应国家后,政府和科研部门开始启动应急管理策略,研究防治措施。本文总结的防治技术均是各个国家结合本国实际探索出的应对对策,相比于番茄潜叶蛾的扩散速度,防治技术的研究明显滞后。此外,很多基于室内的研究结果还有待田间检验。因此,为了抑制番茄潜叶蛾在世界范围内的扩散速度,国际间的信息共享、跨境合作治理是非常必要的。番茄潜叶蛾入侵我国不久,应结合国外已有的技术和经验,集中优势力量和资源在害虫入侵地开展相应的生物学、生态学和防治技术研究,并在其他地区提前开展监测和预警工作,为抑制番茄潜叶蛾在世界范围内的持续扩散提供技术支撑。
参考文献
[1] DESNEUX N, WAJNBER G E, WYCKHUYS K A G, et al. Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control [J]. Journal of Pest Science, 2010, 83(3): 197-215.
[2] CABI. Invasive species compendium, Tuta absoluta (tomato leafminer) datasheet [DB/OL]. [2021-12-30]. https:∥www.cabi.org/isc/datasheet/49260.
[3] CAMPOS M R, BIONDI A, ADIGA A, et al. From the Western Palaearctic region to beyond: Tuta absoluta 10 years after invading Europe [J]. Journal of Pest Science, 2017, 90(3): 787-796.
[4] EPPO. Global database: Tuta absoluta [DB/OL]. [2021-12-30]. https:∥gd.eppo.int/taxon/GNORAB/distribution.
[5] 张桂芬, 冼晓青, 张毅波, 等. 警惕南美番茄潜叶蛾Tuta absoluta (Meyrick) 在中国扩散 [J]. 植物保护, 2020, 46(2): 281-286.
[6] 陆永跃. 警惕番茄潜叶蛾Tuta absoluta (Meyrick)在我国持续扩散入侵 [J].环境昆虫学报, 2021, 43(2): 526-528.
[7] GUEDES R N C, PICANO M C. The tomato borer Tuta absoluta in South America: pest status, management and insecticide resistance [J]. EPPO Bulletin, 2012, 42(2): 211-216.
[8] ECOLE C C, PICANO M, JHAM G N, et al. Variability of Lycopersicon hirsutum f. typicum and possible compounds involved in its resistance to Tuta absoluta [J]. Agricultural and Forest Entomology, 1999, 1(4): 249-254.
[9] GHAREKHANI G H, SALEK-EBRAHIMI H. Life table parameters of Tuta absoluta (Lepidoptera: Gelechiidae) on different varieties of tomato [J]. Journal of Economic Entomology, 2014, 107(5): 1765-1770.
[10]ROSTAMI E, MADADI H, ABBASIPOUR H, et al. Life table parameters of the tomato leaf miner Tuta absoluta (Lepidoptera: Gelechiidae) on different tomato cultivars [J]. Journal of Applied Entomology, 2017, 141(1/2): 88-96.
[11]RAKHA M, ZEKEYA N, SEVGAN S, et al. Screening recently identified whitefly/spider mite-resistant wild tomato accessions for resistance to Tuta absoluta [J]. Plant Breeding, 2017, 136(4): 562-568.
[12]SOHRABI F, NOORYAZDAN H R, GHARATI B, et al. Plant resistance to the moth Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in tomato cultivars [J]. Neotropical Entomology, 2017, 46(2): 203-209.
[13]MALUF W R, MACIEL G M, GOMES L A A, et al. Broad-spectrum arthropod resistance in hybrids between high- and low-acylsugar tomato lines [J]. Crop Science, 2010, 50(2): 439-450.
[14]OLIVEIRA C M D. Resistência de linhagens de tomateiro à traa Tuta absoluta, relacionada a aleloquímicos e à densidade de tricomas [D]. Diamantina: Universidade Federal dos Vales do Jequitinhonha e Mucur, 2011.
[15]SNOEREN T A L, SITBON E, LEVY D. Resistance to arthropod pest in tomatoes: US2017/0240910 A1 [P]. 2017-08-24.
[16]SELALE H, DAGˇLI F, MUTLU N, et al. Cry1Ac-mediated resistance to tomato leaf miner (Tuta absoluta) in tomato [J]. Plant Cell, Tissue and Organ Culture, 2017, 131(1): 65-73.
[17]MOHAMADI P, RAZMJOU J, NASERI B, et al. Population growth parameters of Tuta absoluta (Lepidoptera: Gelechiidae) on tomato plant using organic substrate and biofertilizers [J/OL]. Journal of Insect Science, 2017, 17(2): 36. DOI: 10.1093/jisesa/iex011.
[18]BLAZHEVSKI S, KALAITZAKI A P, TSAGKARAKIS A E. Impact of nitrogen and potassium fertilization regimes on the biology of the tomato leaf miner Tuta absoluta [J]. Entomologia Generalis, 2018, 37(2): 157-174.
[19]HAN P, DESNEUS N, BECKER C, et al. Bottom-up effects of irrigation, fertilization and plant resistance on Tuta absoluta: implications for integrated pest management [J]. Journal of Pest Science, 2019, 92(4): 1359-1370.
[20]CONTRERAS J, MENDOZA J E, MARTNEZ-AGUIRRE M R, et al. Efficacy of enthomopathogenic fungus Metarhizium anisopliae against Tuta absoluta (Lepidoptera: Gelechiidae) [J]. Journal of Economic Entomology, 2014, 107(1): 121-124.
[21]RWOMUSHANA I, BEALE T, CHIPABIKA G, et al. Tomato leafminer (Tuta absoluta): Impacts and coping strategies for Africa [R]. CABI Working Paper, 2019.
[22]BIONDI A, GUEDES R N C, WAN Fanghao, et al. Ecology, worldwide spread, and management of the invasive South American tomato pinworm, Tuta absoluta: past, present, and future [J]. Annual Review of Entomology, 2018, 63: 239-258.
[23]GUEDES R N C, RODITAKIS E, CAMPOS M R, et al. Insecticide resistance in the tomato pinworm Tuta absoluta: patterns, spread, mechanisms, management and outlook [J]. Journal of Pest Science, 2019, 92: 1329-1342.
[24]LIEBHOLD A M, BEREC L, BROCKERHOFF E G, et al. Eradication of invading insect populations: from concepts to applications [J]. Annual Review of Entomology, 2016, 61: 335-352.
[25]MCLAUGHLIN G M, DEARDEN P K. Invasive insects: management methods explored [J]. Journal of Insect Science, 2019, 19(5): 1-9.
[26]王少麗, 史彩华, 徐丹丹. 等. 入侵性南美番茄潜叶蛾高效药剂筛选及其抗性基因突变检测[J]. 中国蔬菜, 2021(11): 33-36.
[27]SIQUEIRA HA, GUEDES R N C, PICANO M C. Insecticide resistance in populations of Tuta absoluta (Lepidoptera: Gelechiidae) [J]. Agricultural and Forest Entomology, 2000, 2(2): 147-153.
[28]SALAZAR E R, ARAYA J E. Tomato moth, Tuta absoluta (Meyrick) response to insecticides in Arica, Chile [J]. Agricultura Técnica, 2001, 61(4): 429-435.
[29]SIQUEIRA H A A, GUEDES R N C, FRAGOSO D B, et al. Abamectin resistance and synergism in Brazilian populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) [J]. International Journal of Pest Management, 2001, 47(4): 247-251.
[30]SILVA G A, PICANO M C, BACCI L, et al. Control failure likelihood and spatial dependence of insecticide resistance in the tomato pinworm, Tuta absoluta [J]. Pest Management Science, 2011, 67(8): 913-920.
[31]SILVA T B M, SILVA W M, CAMPOS M R, et al. Susceptibility levels of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) to minor classes of insecticides in Brazil [J]. Crop Protection, 2016, 79: 80-86.
[32]REYES M, ROCHA K, ALARCN L, et al. Metabolic mechanisms involved in the resistance of field populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) to spinosad [J]. Pesticide Biochemistry and Physiology, 2012, 102(1): 45-50.
[33]CAMPOS M R, RODRIGUES A R S, SILVA W M, et al. Spinosad and the tomato borer Tuta absoluta: a bioinsecticide, an invasive pest threat, and high insecticide resistance [J/OL]. PLoS ONE, 2014, 9(8): e103235. DOI: 10.1371/journal.pone.0103235.
[34]RODITAKIS E, SKARMOUTSOU C, STAURAKAKI M. Toxicity of insecticides to populations of tomato borer Tuta absoluta (Meyrick) from Greece [J]. Pest Management Science, 2013, 69(7): 834-840.
[35]GONTIJO P C, PICANO M C, PEREIRA E J G, et al. Spatial and temporal variation in the control failure likelihood of the tomato leaf miner, Tuta absoluta [J]. Annals of Applied Biology, 2013, 162(1): 50-59.
[36]GUEDES R N C, SIQUEIRA H A A. The tomato borer Tuta absoluta: insecticide resistance and control failure [J/OL]. CABI Reviews, 2012, 7: 055. DOI: 10.1079/PAVSNNR20127055.
[37]RODITAKIS E, VASAKIS E, GRISPOU M, et al. First report of Tuta absoluta resistance to diamide insecticides [J]. Journal of Pest Science, 2015, 88(1): 9-16.
[38]LIETTI M M M, BOTTO E, ALZOGARAY R A. Insecticide resistance in Argentine populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) [J]. Neotropical Entomology, 2005, 34: 113-119.
[39]FERRACINI C, BUENO V H P, DINDO M L, et al. Natural enemies of Tuta absoluta in the Mediterranean basin, Europe and South America [J]. Biocontrol Science and Technology, 2019, 29(6): 578-609.
[40]MANSOUR R, BIONDI A. Releasing natural enemies and applying microbial and botanical pesticides for managing Tuta absoluta in the MENA region [J]. Phytoparasitica, 2021, 49: 179-194.
[41]JAWORSKI C C, CHAILLEUX A, BEAREZ P, et al. Predator-mediated apparent competition between pests fails to prevent yield loss despite actual pest populations decrease [J]. Journal of Pest Science, 2015, 88: 793-803.
[42]BACCI L, SILVAM, SILVA G A, et al. Natural mortality factors of tomato leafminer Tuta absoluta in open-field tomato crops in South America [J]. Pest Management Science, 2019, 75(3): 736-743.
[43]PREZ-HEDO M, RIAHI C, URBANEJA A. Use of zoophytophagous mirid bugs in horticultural crops: current challenges and future perspectives [J]. Pest Management Science, 2021, 77(1): 33-42.
[44]SYLLA S, BRVAULT T, DIARRA K, et al. Life-history traits of Macrolophus pygmaeus with different prey foods [J/OL]. PLoS ONE, 2016, 11(11): e0166610. DOI: 10.1371/journal.pone.0166610.
[45]THOMINE E, JEAVONS E, RUSCH A, et al. Effect of crop diversity on predation activity and population dynamics of the mirid predator Nesidiocoris tenuis [J]. Journal of Pest Science, 2020, 93(4): 1255-1265.
[46]URBANEJA A, GONZLEZ-CABRERA J, ARNO J, et al. Prospects for the biological control of Tuta absoluta in tomatoes of the Mediterranean basin [J]. Pest Management Science, 2012, 68(9): 1215-1222.
[47]ARN J, GABARRA R. Side effects of selected insecticides on the Tuta absoluta (Lepidoptera: Gelechiidae) predators Macrolophus pygmaeus and Nesidiocoris tenuis (Hemiptera: Miridae) [J]. Journal of Pest Science, 2011, 84(4): 513-520.
[48]ZAPPALA L, SISCARO G, BIONDI A L, et al. Efficacy of sulphur on Tuta absoluta and its side effects on the predator Nesidiocoris tenuis [J]. Journal of Applied Entomology, 2012, 136(6): 401-409.
[49]NASELLI M, ZAPPALA L, GUGLIUZZO A, et al. Olfactory response of the zoophytophagous mirid Nesidiocoris tenuis to tomato and alternative host plants [J]. Arthropod-Plant Interactions, 2017, 11(2): 121-131.
[50]BALZAN M V. Flowering banker plants for the delivery of multiple agroecosystem services [J]. Arthropod-Plant Interactions, 2017, 11(6): 743-754.
[51]ARDANUY A, FIGUERAS M, MATAS M, et al. Banker plants and landscape composition influence colonisation precocity of tomato greenhouses by mirid predators [J]. Journal of Pest Science, 2022, 95: 447-459.
[52]MEDEIROS M A, DE BOAS G L V, VILELA N J, CARRIJO O A. A preliminary survey and biological control of South America tomato pinworm with the parasitic Trichogramma pretiosum in greenhouse models [J]. Horticultura Brasileira, 2009, 27: 80-85.
[53]VIRGALA M B R, BOTTO E N. Biological studies on Trichogrammatoidea bactrae Nagaraja (Hymenoptera: Trichogrammatidae), egg parasitoid of Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) [J]. Neotropical Entomology, 2010, 39(4): 612-617.
[54]SALAS GERVASSIO N G. Perspectivas del uso del endoparasitoide nativo Pseudapanteles dignus (Muesebeck) (Hymenoptera: Braconidae) para el control biológico de la polilla del tomate Tuta absoluta (Meyrick) (Lepidoptera: Gelechidae) [D]. Argentina: Universidad Nacional de La Plata, 2017.
[55]DE OLIVEIRA C M, DE OLIVEIRA J V, BREDA M O, et al. Biological parameters and thermal requirements of Trichogramma pretiosum for the management of the tomato fruit borer (Lepidoptera: Crambidae) in tomatoes [J]. Crop Protection, 2017, 99: 39-44.
[56]DESNEUX N, HAN P, MANSOUR R, et al. Integrated pest management of Tuta absoluta: practical implementations across different world regions [J]. Journal of Pest Science, 2022, 95: 17-39.
[57]CHERIF A, MANSOUR R, ATTIA-BARHOUMI S, et al. Effectiveness of different release rates of Trichogramma cacoeciae (Hymenoptera: Trichogrammatidae) against Tuta absoluta (Lepidoptera: Gelechiidae) in protected and open field tomato crops in Tunisia [J]. Biocontrol Science and Technology, 2019, 29(2): 149-161.
[58]ZOUBA A, CHERMITI B, CHRAIET R, et al. Effect of two indigenous Trichogramma species on the infestation level by tomato miner Tuta absoluta in tomato greenhouses in the south-west of Tunisia [J]. Tunisian Journal of Plant Protection, 2013, 8(2): 87-106.
[59]CHAILLEUX A, BEAREZ P, PIZZOL J, et al. Potential for combined use of parasitoids and generalist predators for biological control of the key invasive tomato pest Tuta absoluta [J]. Journal of Pest Science, 2013, 86(3): 533-541.
[60]KEECI M, ZTOP A. Possibilities for biological control of Tuta absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae) in the western Mediterranean region of Turkey [J]. Turkish Journal of Entomology, 2017, 41(2): 219-230.
[61]ALSAEDI G, ASHOURI A, TALAEI-HASSANLOUI R. Assessment of two Trichogramma species with Bacillus thuringiensis var. krustaki for the control of the tomato leafminer Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) in Iran [J]. Open Journal of Ecology, 2017, 7(2): 112-124.
[62]JAMSHIDNIA A, ABDOLI S, FARROKHI S, et al. Efficiency of spinosad, Bacillus thuringiensis and Trichogramma brassicae against the tomato leafminer in greenhouse [J]. BioControl, 2018, 63(5): 619-627.
[63]LACEY L A. Microbial control of insect and mite pests: from theory to practice [M]. Academic Press, 2016.
[64]THEODULOZ C, VEGA A, SALAZAR M, et al. Expression of a Bacillus thuringiensis δ-endotoxin cry1Ab gene in Bacillus subtilis and Bacillus licheniformis strains that naturally colonize the phylloplane of tomato plants (Lycopersicon esculentum, Mills) [J]. Journal of Applied Microbiology, 2003, 94(3): 375-381.
[65]GONZLEZ-CABRERA J, MOLL O, MONTN H, et al. Efficacy of Bacillus thuringiensis (Berliner) in controlling the tomato borer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) [J]. BioControl, 2011, 56(1): 71-80.
[66]YKSEL E, AIKGZ , DEMIRCI F, et al. Effects of the entomopathogenic fungi, Beauveria bassiana, Isaria farinosa and Purpureocillium lilacinum, on eggs of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) [J]. Türkiye Biyolojik Mücadele Dergisi, 2017, 8(1): 39-47.
[67]KLIEBER J, REINEKE A. The entomopathogen Beauveria bassiana has epiphytic and endophytic activity against the tomato leaf miner Tuta absoluta [J]. Journal of Applied Entomology, 2016, 140(8): 580-589.
[68]ABDEL-BAKY N F, ALHEWAIRINI S S, AL-AZZAZY M M, et al. Efficacy of Metarhizium anisopliae and Beauveria bassiana against Tuta absoluta (Lepidoptera: Gelechiidae) eggs under laboratory conditions [J]. Pakistan Journal of Agricultural Sciences, 2021, 58(2): 743-750.
[69]MASCARIN G M, ALVES S B, RAMPELOTTI-FERREIRA F T, et al. Potential of a granulovirus isolate to control Phthorimaea operculella (Lepidoptera: Gelechiidae) [J]. BioControl, 2010, 55(5): 657-671.
[70]EI AIMANI A, MOKRINI F, HOUARI A, et al. Potential of indigenous entomopathogenic nematodes for controlling tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) under laboratory and field conditions in Morocco [J/OL]. Physiological and Molecular Plant Pathology, 2021, 116: 101710. DOI: 10.1016/j.pmpp.2021.101710.
[71]ERLER F, KIRISIK M, TOPUZ E. Comparable study on different colored sticky traps for catching of adult Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) [J]. Fresenius Environmental Bulletin, 2020, 29(9): 7349-7354.
[72]ATTYGALLE A B, JHAM G N, SVATO A, et al. Microscale, random reduction: Application to the characterization of (3E,8Z,11Z)-3,8,11-tetradecatrienyl acetate, a new lepidopteran sex pheromone [J]. Tetrahedron Letters, 1995, 36(31): 5471-5474.
[73]ATTYGALLE A B, JHAM G N, SVATO A, et al. (3E,8Z,11Z)-3,8,11-tetradecatrienyl acetate, major sex pheromone component of the tomato pest Scrobipalpuloides absoluta (Lepidoptera: Gelechiidae) [J]. Bioorganic & Medicinal Chemistry, 1996, 4(3): 305-314.
[74]GRIEPINK F C, VAN BEEK T A, POSTHUMUS M A, et al. Identification of the sex pheromone of Scrobipalpula absoluta; determination of double bond positions in triple unsaturated straight chain molecules by means of dimethyl disulphide derivatization [J]. Tetrahedron Letters, 1996, 37(3): 411-414.
[75]SVATO A, ATTYGALLE A B, JHAM G N, et al. Sex pheromone of tomato pest Scrobipalpuloides absoluta (Lepidoptera: Gelechiidae) [J]. Journal of Chemical Ecology, 1996, 22(4): 787-800.
[76]VACAS S, LPEZ J, PRIMO J, et al. Response of Tuta absoluta (Lepidoptera: Gelechiidae) to different pheromone emission levels in greenhouse tomato crops [J]. Environmental Entomology, 2013, 42(5): 1061-1068.
[77]LOBOS E, OCCHIONERO M, WERENITZKY D, et al. Optimization of a trap for Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) and trials to determine the effectiveness of mass trapping [J]. Neotropical Entomology, 2013, 42(5): 448-457.
[78]張桂芬, 张毅波, 刘万学, 等. 4种性信息素产品对新发南美番茄潜叶蛾引诱效果研究[J]. 植物保护, 2020, 46(5): 303-308.
[79]RODA A L, BRAMBILA J, BARRIA J, et al. Efficiency of trapping systems for detecting Tuta absoluta (Lepidoptera: Gelechiidae) [J]. Journal of Economic Entomology, 2015, 108(6): 2648-2654.
[80]COCCO A, DELIPERI S, DELRIO G. Control of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in greenhouse tomato crops using the mating disruption technique [J]. Journal of Applied Entomology, 2013, 137(1/2): 16-28.
[81]COCCO A, DELIPERI S, DELRIO G. Potential of mass trapping for Tuta absoluta management in greenhouse tomato crops using light and pheromone traps [J]. IOBC-WPRS Bulletin, 2012, 80: 319-324.
[82]ERLER F, BAYRAM Y. Efficacy of mass trapping of tomato moth, Tuta absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae), using a new-designed light trap in reducing leaf and fruit damages in greenhouse-grown tomatoes [J]. Journal of Plant Diseases and Protection, 2021, 128: 1177-1185.
[83]KOGAN M, BAJWA W I. Integrated pest management: a global reality? [J]. Anais da Sociedade Entomológica do Brasil, 1999, 28(1): 1-25.
(责任编辑:杨明丽)